PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o227.
Published online 2007 December 6. doi:  10.1107/S1600536807065312
PMCID: PMC2915288

4-Meth­oxy-N-[6-methyl-2,3-dihydro-1,3-benzothia­zol-2-yl­idene]benzene­sulfonamide

Abstract

The title compound, C15H14N2O3S2, is of inter­est with respect to its biological activity. The crystal structure is stabilized by inter­molecular N—H(...)N, C—H(...)O and C—H(...)π hydrogen-bonding inter­actions, as well as offset π–π inter­actions [distance between the centroids of the aryl and thiazole rings of adjacent molecules of 3.954 (2) Å].

Related literature

For related literature, see: Su et al. (2006 [triangle]); Vicker et al. (2007 [triangle]); Siddiqui et al. (2007 [triangle]); Adams et al. (1996 [triangle]); Bernstein et al. (1995 [triangle]); Desiraju (1991 [triangle]); Hanton et al. (1992 [triangle]); Hunter (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o227-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O3S2
  • M r = 334.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o227-efi1.jpg
  • a = 12.0173 (15) Å
  • b = 16.211 (2) Å
  • c = 7.7377 (10) Å
  • β = 99.973 (2)°
  • V = 1484.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 273 (2) K
  • 0.57 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.816, T max = 0.964
  • 12102 measured reflections
  • 2617 independent reflections
  • 2440 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.117
  • S = 1.15
  • 2617 reflections
  • 205 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus-NT (Bruker, 2000 [triangle]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL-NT (Bruker, 2000 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065312/at2516sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065312/at2516Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by CONACyT under grants 55591 and 3562P-E; PAPCA (FESI-UNAM), PAPIIT IN 203205 (DGAPA-UNAM).

supplementary crystallographic information

Comment

Benzothiazole benzenesulfonamides are selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They have a considerable potential use for the treatment of metabolic diseases, such as diabetes mellitus type 2 or obesity (Su et al., 2006; Vicker et al., 2007). This kind of compounds have also shown anticonvulsant activity (Siddiqui et al., 2007).

In order to assist our knowledge about the electronic and steric requirements to shown antihyperglycemic activity, we have determined the crystal structure of the title compound, which is a new chemical entity with potential use in the treatment of diabetes.

The title compound (I) crystallizes in the centrosymmetric monoclinic space group P21/c. The crystal structure is stabilized by strong hydrogen-bonding interactions N1—H1···N2, and weak hydrogen bonding interactions C—H···O, which are forming R22(8) motifs (Bernstein et al., 1995) Fig. 1, Table 2. In the crystal packing there are also π-facial hydrogen bonds between the methoxy group (C14) and C8—C13 benzene ring (O—CH3···π) (Hanton et al., 1992; Adams et al., 1996, Desiraju, 1991). The distance between C14 and the ring centroid (Cg3) is 3.433 (3) Å (Fig. 2, Table 2).

The crystal structure is also stabilized by offset π-π interactions between two adjacent molecules, with a distance between the centroids of the C1—C6 benzene ring (Cg2) and (S2/C7/N1/C2/C1) benzothiazol ring (Cg1) of 3.954 (2) Å (Fig. 2). This interaction is favourable by effect of polarization of the sulfonamid group (Hunter, 1994).

Experimental

To a solution of 2-amino-6-methylbenzothiazole (0.0030 mol) in dichloromethane (10 ml) were added triethylamine (1.1 eq), and a catalytic amount of dimethylaminopyridine (DMAP). After stirring at room temperature for 15 min, a solution of 4-methoxybenzenesulfonyl chloride (0.0033 mol, 1.1 eq) in 5 ml of dichloromethane was added droopingly. The reaction mixture was stirred at 313 K under nitrogen atmosphere for 6 h. After complete conversion as indicated by TLC, the solvent was removed in vacuo, the residue was neutralized with saturated NaHCO3 solution, and the aqueous layer was extracted with ethyl acetate (3 x 15 ml), washed with water (3 x 20 ml), and dried over anhydrous Na2SO4. The solvent was evaporated in vacuo to give a yellow solid (m.p. 534.4 K). Single crystals of (I) were obtained from acetonitrile.

Refinement

The hydrogen H1 was located in a difference Fourier map and was refined freely. The other H atoms were constrained to the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethyl = 0.96 Å, Uiso(H) = 1.5 Ueq(Cmethyl)].

Figures

Fig. 1.
The molecular structure of (I) showing 50% probability displacement ellipsoids, H atoms are shown as small spheres of arbitrary radius and the atomic numbering. The intermolecular hydrogen bonds N—H···N and C—H···O, ...
Fig. 2.
A view of the π-facial hydrogen bonds (OCH3···π) and offset π-π interactions. Dashed lines indicate the interaction between methoxy group (C14) and centroid Cg3, as well as between centroids (Cg1, ...

Crystal data

C15H14N2O3S2F000 = 696
Mr = 334.40Dx = 1.496 Mg m3
Monoclinic, P21/cMelting point: 534.4 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 12.0173 (15) ÅCell parameters from 2617 reflections
b = 16.211 (2) Åθ = 1.7–25.0º
c = 7.7377 (10) ŵ = 0.37 mm1
β = 99.973 (2)ºT = 273 (2) K
V = 1484.6 (3) Å3Rectangular prism, yellow
Z = 40.57 × 0.16 × 0.10 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2617 independent reflections
Radiation source: fine-focus sealed tube2440 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
Detector resolution: 8.3 pixels mm-1θmax = 25.0º
T = 273(2) Kθmin = 1.7º
[var phi] and ω scansh = −14→14
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)k = −19→18
Tmin = 0.816, Tmax = 0.964l = −9→9
12102 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117  w = 1/[σ2(Fo2) + (0.0504P)2 + 0.9002P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
2617 reflectionsΔρmax = 0.41 e Å3
205 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1795 (2)0.78238 (17)0.4365 (3)0.0450 (6)
C20.0744 (2)0.80223 (16)0.4774 (3)0.0422 (6)
C3−0.0003 (2)0.74059 (17)0.5022 (4)0.0512 (7)
H3−0.07040.75310.53070.061*
C40.0318 (3)0.66009 (18)0.4836 (4)0.0556 (7)
H4−0.01850.61830.49930.067*
C50.1359 (3)0.63832 (18)0.4425 (4)0.0524 (7)
C60.2108 (2)0.70089 (18)0.4188 (4)0.0498 (7)
H60.28120.68830.39130.060*
C70.1455 (2)0.93390 (16)0.4535 (3)0.0402 (6)
C80.3207 (2)1.09049 (15)0.6440 (3)0.0385 (6)
C90.4280 (2)1.05758 (17)0.6913 (4)0.0455 (6)
H90.45761.02340.61390.055*
C100.4905 (2)1.07537 (17)0.8519 (4)0.0469 (6)
H100.56301.05400.88240.056*
C110.4465 (2)1.12510 (15)0.9704 (3)0.0408 (6)
C120.3377 (2)1.15595 (17)0.9262 (4)0.0451 (6)
H120.30681.18771.00610.054*
C130.2755 (2)1.13914 (16)0.7626 (4)0.0440 (6)
H130.20301.16050.73160.053*
C140.4823 (3)1.1987 (2)1.2418 (4)0.0591 (8)
H14A0.46871.25101.18380.089*
H14B0.54051.20461.34290.089*
H14C0.41411.17981.27780.089*
C150.1682 (3)0.54964 (19)0.4239 (4)0.0669 (9)
H15A0.18490.52460.53790.100*
H15B0.23370.54690.36860.100*
H15C0.10680.52080.35340.100*
H1−0.003 (2)0.9100 (16)0.509 (3)0.046 (8)*
N10.05952 (18)0.88679 (13)0.4860 (3)0.0426 (5)
N20.13799 (17)1.01569 (13)0.4570 (3)0.0434 (5)
O10.31808 (16)1.03121 (12)0.3323 (2)0.0513 (5)
O20.19594 (16)1.14977 (12)0.3663 (3)0.0563 (5)
O30.51706 (16)1.14040 (12)1.1242 (3)0.0541 (5)
S10.24400 (5)1.07274 (4)0.43153 (8)0.0417 (2)
S20.25626 (5)0.87158 (5)0.40816 (9)0.0480 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0430 (14)0.0497 (16)0.0401 (14)0.0028 (12)0.0015 (11)−0.0023 (12)
C20.0412 (13)0.0448 (15)0.0388 (13)0.0035 (12)0.0014 (11)−0.0044 (11)
C30.0462 (15)0.0451 (16)0.0613 (17)−0.0012 (13)0.0062 (13)−0.0020 (14)
C40.0613 (18)0.0438 (16)0.0585 (18)−0.0095 (14)0.0017 (14)0.0016 (13)
C50.0669 (18)0.0441 (16)0.0414 (15)0.0084 (14)−0.0041 (13)−0.0028 (12)
C60.0512 (16)0.0512 (17)0.0457 (15)0.0115 (13)0.0042 (12)−0.0017 (12)
C70.0334 (12)0.0466 (15)0.0395 (13)−0.0003 (11)0.0039 (10)−0.0051 (11)
C80.0346 (12)0.0335 (13)0.0491 (14)−0.0050 (10)0.0119 (11)−0.0019 (11)
C90.0432 (14)0.0447 (15)0.0512 (15)0.0082 (12)0.0150 (12)−0.0060 (12)
C100.0392 (14)0.0462 (16)0.0561 (16)0.0104 (12)0.0106 (12)−0.0031 (12)
C110.0416 (13)0.0344 (13)0.0472 (14)−0.0011 (11)0.0097 (11)0.0001 (11)
C120.0418 (14)0.0442 (15)0.0526 (16)0.0034 (12)0.0173 (12)−0.0077 (12)
C130.0313 (12)0.0462 (15)0.0557 (16)0.0038 (11)0.0108 (11)−0.0052 (12)
C140.0651 (19)0.0595 (19)0.0521 (17)0.0015 (15)0.0086 (14)−0.0137 (14)
C150.090 (2)0.0467 (18)0.0602 (19)0.0139 (17)0.0018 (17)−0.0001 (15)
N10.0339 (11)0.0405 (13)0.0538 (13)0.0021 (10)0.0084 (10)−0.0054 (10)
N20.0348 (11)0.0393 (12)0.0568 (13)−0.0015 (9)0.0098 (10)−0.0064 (10)
O10.0471 (10)0.0587 (13)0.0518 (11)−0.0061 (9)0.0184 (9)−0.0104 (9)
O20.0562 (12)0.0495 (12)0.0611 (12)0.0012 (9)0.0046 (10)0.0077 (9)
O30.0507 (11)0.0564 (12)0.0532 (11)0.0081 (9)0.0031 (9)−0.0098 (9)
S10.0377 (3)0.0418 (4)0.0469 (4)−0.0029 (3)0.0109 (3)−0.0028 (3)
S20.0389 (4)0.0487 (4)0.0582 (4)0.0048 (3)0.0137 (3)−0.0031 (3)

Geometric parameters (Å, °)

C1—C61.387 (4)C9—H90.9300
C1—C21.391 (4)C10—C111.392 (4)
C1—S21.749 (3)C10—H100.9300
C2—C31.378 (4)C11—O31.359 (3)
C2—N11.385 (3)C11—C121.387 (4)
C3—C41.375 (4)C12—C131.381 (4)
C3—H30.9300C12—H120.9300
C4—C51.388 (4)C13—H130.9300
C4—H40.9300C14—O31.424 (3)
C5—C61.389 (4)C14—H14A0.9600
C5—C151.502 (4)C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—N21.330 (3)C15—H15A0.9600
C7—N11.343 (3)C15—H15B0.9600
C7—S21.754 (3)C15—H15C0.9600
C8—C91.385 (4)N1—H10.89 (3)
C8—C131.390 (3)N2—S11.614 (2)
C8—S11.764 (3)O1—S11.4394 (19)
C9—C101.367 (4)O2—S11.431 (2)
C6—C1—C2121.0 (3)C12—C11—C10119.7 (2)
C6—C1—S2128.1 (2)C13—C12—C11119.5 (2)
C2—C1—S2110.9 (2)C13—C12—H12120.2
C3—C2—N1128.2 (2)C11—C12—H12120.2
C3—C2—C1120.1 (3)C12—C13—C8120.4 (2)
N1—C2—C1111.7 (2)C12—C13—H13119.8
C4—C3—C2118.2 (3)C8—C13—H13119.8
C4—C3—H3120.9O3—C14—H14A109.5
C2—C3—H3120.9O3—C14—H14B109.5
C3—C4—C5123.0 (3)H14A—C14—H14B109.5
C3—C4—H4118.5O3—C14—H14C109.5
C5—C4—H4118.5H14A—C14—H14C109.5
C4—C5—C6118.3 (3)H14B—C14—H14C109.5
C4—C5—C15121.6 (3)C5—C15—H15A109.5
C6—C5—C15120.1 (3)C5—C15—H15B109.5
C1—C6—C5119.3 (3)H15A—C15—H15B109.5
C1—C6—H6120.4C5—C15—H15C109.5
C5—C6—H6120.4H15A—C15—H15C109.5
N2—C7—N1120.4 (2)H15B—C15—H15C109.5
N2—C7—S2129.42 (19)C7—N1—C2116.3 (2)
N1—C7—S2110.18 (19)C7—N1—H1120.3 (17)
C9—C8—C13119.8 (2)C2—N1—H1123.4 (17)
C9—C8—S1119.73 (19)C7—N2—S1120.74 (17)
C13—C8—S1120.45 (19)C11—O3—C14118.2 (2)
C10—C9—C8119.9 (2)O2—S1—O1117.99 (12)
C10—C9—H9120.1O2—S1—N2105.33 (12)
C8—C9—H9120.1O1—S1—N2111.79 (11)
C9—C10—C11120.7 (2)O2—S1—C8107.49 (12)
C9—C10—H10119.7O1—S1—C8107.55 (12)
C11—C10—H10119.7N2—S1—C8106.02 (12)
O3—C11—C12124.7 (2)C1—S2—C790.91 (12)
O3—C11—C10115.6 (2)
C6—C1—C2—C30.4 (4)S1—C8—C13—C12−177.1 (2)
S2—C1—C2—C3178.9 (2)N2—C7—N1—C2179.3 (2)
C6—C1—C2—N1−179.0 (2)S2—C7—N1—C2−0.1 (3)
S2—C1—C2—N1−0.5 (3)C3—C2—N1—C7−179.0 (3)
N1—C2—C3—C4178.7 (3)C1—C2—N1—C70.4 (3)
C1—C2—C3—C4−0.6 (4)N1—C7—N2—S1175.70 (19)
C2—C3—C4—C50.5 (4)S2—C7—N2—S1−5.1 (3)
C3—C4—C5—C6−0.1 (4)C12—C11—O3—C14−6.8 (4)
C3—C4—C5—C15179.8 (3)C10—C11—O3—C14172.5 (2)
C2—C1—C6—C5−0.1 (4)C7—N2—S1—O2155.3 (2)
S2—C1—C6—C5−178.3 (2)C7—N2—S1—O125.9 (2)
C4—C5—C6—C1−0.1 (4)C7—N2—S1—C8−91.0 (2)
C15—C5—C6—C1−180.0 (3)C9—C8—S1—O2−134.5 (2)
C13—C8—C9—C10−2.2 (4)C13—C8—S1—O243.7 (2)
S1—C8—C9—C10176.0 (2)C9—C8—S1—O1−6.5 (2)
C8—C9—C10—C111.2 (4)C13—C8—S1—O1171.7 (2)
C9—C10—C11—O3−178.4 (2)C9—C8—S1—N2113.2 (2)
C9—C10—C11—C121.0 (4)C13—C8—S1—N2−68.6 (2)
O3—C11—C12—C13177.1 (2)C6—C1—S2—C7178.7 (3)
C10—C11—C12—C13−2.1 (4)C2—C1—S2—C70.4 (2)
C11—C12—C13—C81.1 (4)N2—C7—S2—C1−179.5 (2)
C9—C8—C13—C121.1 (4)N1—C7—S2—C1−0.15 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.89 (2)2.07 (2)2.948 (3)169 (2)
C3—H3···O2i0.932.413.248 (3)150
C6—H6···O3ii0.932.573.485 (3)169
C9—H9···O10.932.512.894 (3)105
C14—H14A···Cg3iii0.932.763.433 (3)128

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2516).

References

  • Adams, H., Carver, F. J., Hunter, C. A., Morales, J. C. & Seward, E. M. (1996). Angew. Chem. Int. Ed. Engl.35, 1542–1544.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, D.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2000). SMART (Version 5.618), SAINT-Plus-NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1991). Acc. Chem. Res.24, 290–296.
  • Hanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134–1136.
  • Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2003). SADABS Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siddiqui, N., Pandeya, N. S., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett.17, 255–259. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Su, X., Vicker, N., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. J. & Potter, B. V. L. (2006). Mol. Cell. Endocrinol. 248, 214-217. [PubMed]
  • Vicker, N., Su, X., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. J. & Potter, B. V. L. (2007). J. Steroid Biochem. Mol. Biol.104, 123–129. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography