PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o226.
Published online 2007 December 6. doi:  10.1107/S1600536807065191
PMCID: PMC2915287

2,6-Bis(1-isopropyl-5-phenyl-1H-pyrazol-3-yl)pyridine

Abstract

In the title compound, C29H29N5, the central pyridine ring and the two pyrazole rings are approximately coplanar, the dihedral angles between the pyridine and pyrazole rings being 3.94 (12) and 14.84 (12)°. The pyrazole and phenyl rings on each side of the mol­ecule are twisted with dihedral angles of 46.72 (8) and 73.39 (8)°. One phenyl ring inter­acts with a pyrazole ring of a neighbouring mol­ecule via a weak inter­molecular C—H(...)π inter­action, which stabilizes the mol­ecular packing.

Related literature

For general background, see: Dias & Gamage (2007 [triangle]); Zhou & Chen (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o226-scheme1.jpg

Experimental

Crystal data

  • C29H29N5
  • M r = 447.57
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o226-efi1.jpg
  • a = 9.973 (3) Å
  • b = 10.172 (3) Å
  • c = 14.014 (4) Å
  • α = 110.940 (4)°
  • β = 106.494 (4)°
  • γ = 94.583 (4)°
  • V = 1246.8 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 (2) K
  • 0.53 × 0.43 × 0.39 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.963, T max = 0.972
  • 6572 measured reflections
  • 4332 independent reflections
  • 2417 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.123
  • S = 1.05
  • 4332 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065191/is2264sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065191/is2264Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Pyrazolyl ligands are a kind of mutifuntional organic ligands often displaying exo-bidentate coordination mode (Dias & Gamage, 2007). The title compound, 2,6-bis(5-phenyl-1-isopropyl-1H-pyrazol-3-yl)pyridine (hereinafter abbreviated to bpipp), is a potentially tridentate pincer ligand by N-alkylation of a bispyrazolyl ligand.

The asymmetric unit of the title compound contains only one bpipp molecule (Fig. 1). The pyrazole and pyridine rings are near-coplanar [inter-ring dihedral angles 3.94 (12) and 14.84 (12)°], whereas the pyrazole rings are twisted from the phenyl rings with the two dihedral angles 46.72 (8) and 73.39 (8)°. The phenyl ring interacts with the pyrazole ring of the neighbouring molecule to afford a weak intermolecular C—H··· π interaction (Table 1; Cg1 is the centroid of the C6—C8/N2/N3 pyrazole ring) which stabilizes the molecular packing. The centroid to centroid distance between stacked pyridine rings is ca 4.88 Å, which is very long and prevents π-π stacking (Fig. 2). All bond lengths and angles are normal.

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used as received, unless stated otherwise. 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine (bppp) was prepared by the general procedure of Zhou and Chen (2007). A mixture of bppp (0.72 g, 2 mmol) and 60% NaH (0.32 g, 8 mmol) in dry DMF (15 ml) was stirred for 2 h at room temperature. To the solution was added 2-bromopropane (0.98 g, 8 mmol). After stirring at 333 K for two days, the resulting solution was concentrated to 4 ml. Addition of H2O (15 ml) precipitated a pale yellow powder. Column chromatography involved elution with ethyl acetate/ petroleum ether (1:4) separated the compound as a white powder (0.56 g). Yield: 62%. Anal. Calcd for C29H29N5: C 77.82, H 6.53, N 15.65; Found: C 77.60, H 6.62, N 15.57. MS (m/z): 447 (M+, 100), 432, 405, 390, 363, 334, 304, 195, 168, 115, 77. 1H NMR (DMSO-d6): 7.90 (br, 3H), 7.56–7.48 (m, 10H), 6.99 (s, 2H), 4.58(m, 2H), 1.47(s, 6H), 1.45 (s, 6H). 13C NMR (100 MHz, DMSO-d6): δ 151.8, 150.5, 144.5, 130.6, 129.3, 129.2, 129.0, 125.14, 118.1, 104.8, 50.3, 23.2, 23.1. Colorless single crystals were grown from slow evaporation of a saturated MeOH solution of the compound.

Refinement

H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.93 (aromatic CH), 0.98 (methylene CH), or 0.96 Å (methyl CH3), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
A packing view of the title compound along the b axis. H atoms have been omitted for clarity.

Crystal data

C29H29N5Z = 2
Mr = 447.57F000 = 476
Triclinic, P1Dx = 1.192 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.973 (3) ÅCell parameters from 1546 reflections
b = 10.172 (3) Åθ = 2.8–21.8º
c = 14.014 (4) ŵ = 0.07 mm1
α = 110.940 (4)ºT = 298 (2) K
β = 106.494 (4)ºPrism, colorless
γ = 94.583 (4)º0.53 × 0.43 × 0.39 mm
V = 1246.8 (6) Å3

Data collection

SMART 1K CCD area-detector diffractometer4332 independent reflections
Radiation source: fine-focus sealed tube2417 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)h = −11→7
Tmin = 0.963, Tmax = 0.972k = −10→12
6572 measured reflectionsl = −15→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.123  w = 1/[σ2(Fo2) + (0.0483P)2 + 0.0355P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4332 reflectionsΔρmax = 0.14 e Å3
307 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.49140 (17)0.25670 (17)0.32171 (13)0.0437 (5)
N20.75204 (19)0.58665 (18)0.45974 (14)0.0507 (5)
N30.77219 (19)0.67986 (18)0.41370 (14)0.0510 (5)
N40.28141 (19)−0.09220 (18)0.24676 (14)0.0522 (5)
N50.19993 (19)−0.17780 (17)0.14410 (14)0.0519 (5)
C10.4400 (2)0.1424 (2)0.33672 (17)0.0419 (5)
C20.4774 (2)0.1347 (2)0.43729 (17)0.0494 (6)
H20.44000.05390.44500.059*
C30.5705 (2)0.2481 (2)0.52506 (18)0.0520 (6)
H30.59760.24510.59330.062*
C40.6235 (2)0.3662 (2)0.51153 (17)0.0491 (6)
H40.68570.44490.57050.059*
C50.5832 (2)0.3665 (2)0.40889 (17)0.0412 (5)
C60.6374 (2)0.4876 (2)0.38672 (17)0.0437 (5)
C70.5864 (2)0.5158 (2)0.29458 (17)0.0473 (6)
H70.50880.46140.23270.057*
C80.6735 (2)0.6402 (2)0.31321 (18)0.0468 (6)
C90.6679 (2)0.7231 (2)0.24527 (19)0.0492 (6)
C100.6480 (3)0.6519 (3)0.1365 (2)0.0699 (8)
H100.64020.55280.10730.084*
C110.6396 (3)0.7265 (4)0.0706 (2)0.0927 (10)
H110.62570.6775−0.00270.111*
C120.6517 (3)0.8726 (4)0.1130 (3)0.0894 (9)
H120.64780.92270.06870.107*
C130.6693 (3)0.9441 (3)0.2190 (3)0.0743 (8)
H130.67711.04330.24750.089*
C140.6757 (3)0.8699 (3)0.2845 (2)0.0623 (7)
H140.68560.91960.35690.075*
C150.3432 (2)0.0234 (2)0.23969 (17)0.0436 (5)
C160.3022 (2)0.0097 (2)0.13208 (17)0.0489 (6)
H160.33110.07590.10650.059*
C170.2110 (2)−0.1202 (2)0.07220 (16)0.0454 (6)
C180.1321 (3)−0.1941 (2)−0.04508 (17)0.0469 (6)
C190.2024 (3)−0.2537 (3)−0.1166 (2)0.0655 (7)
H190.3005−0.2471−0.09070.079*
C200.1282 (3)−0.3234 (3)−0.2265 (2)0.0724 (8)
H200.1766−0.3643−0.27400.087*
C21−0.0148 (3)−0.3324 (2)−0.2656 (2)0.0632 (7)
H21−0.0641−0.3793−0.33970.076*
C22−0.0861 (3)−0.2729 (3)−0.1964 (2)0.0647 (7)
H22−0.1841−0.2792−0.22300.078*
C23−0.0128 (3)−0.2035 (2)−0.08679 (19)0.0603 (7)
H23−0.0620−0.1621−0.04010.072*
C240.9034 (2)0.7923 (2)0.46856 (19)0.0549 (6)
H240.90620.84360.42160.066*
C251.0336 (3)0.7258 (3)0.4818 (2)0.0694 (7)
H25A1.03050.65840.41220.104*
H25B1.03540.67680.52920.104*
H25C1.11800.79980.51230.104*
C260.8991 (3)0.8999 (2)0.5743 (2)0.0707 (8)
H26A0.81470.93920.56090.106*
H26B0.98200.97590.60670.106*
H26C0.89780.85300.62270.106*
C270.1273 (3)−0.3221 (2)0.12085 (19)0.0606 (7)
H270.0613−0.36270.04590.073*
C280.0417 (3)−0.3145 (3)0.1945 (3)0.1074 (11)
H28A−0.0257−0.25390.18540.161*
H28B0.1046−0.27550.26840.161*
H28C−0.0085−0.40930.17660.161*
C290.2353 (3)−0.4163 (3)0.1301 (2)0.0955 (10)
H29A0.2869−0.41810.08150.143*
H29B0.1870−0.51210.11160.143*
H29C0.3007−0.37870.20320.143*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0443 (11)0.0382 (10)0.0421 (11)−0.0014 (9)0.0103 (9)0.0141 (9)
N20.0509 (12)0.0475 (11)0.0481 (11)−0.0066 (9)0.0097 (10)0.0214 (9)
N30.0506 (12)0.0459 (11)0.0497 (12)−0.0065 (9)0.0095 (10)0.0205 (9)
N40.0565 (12)0.0441 (11)0.0403 (11)−0.0105 (9)0.0036 (9)0.0132 (9)
N50.0594 (13)0.0424 (11)0.0393 (11)−0.0091 (9)0.0037 (10)0.0137 (9)
C10.0401 (13)0.0374 (12)0.0413 (13)0.0013 (10)0.0089 (10)0.0131 (10)
C20.0519 (14)0.0473 (13)0.0439 (14)−0.0016 (11)0.0075 (12)0.0214 (11)
C30.0570 (15)0.0535 (14)0.0390 (13)−0.0010 (12)0.0081 (12)0.0197 (11)
C40.0458 (14)0.0482 (14)0.0410 (14)−0.0025 (11)0.0067 (11)0.0124 (11)
C50.0390 (12)0.0383 (12)0.0410 (13)0.0022 (10)0.0116 (10)0.0124 (10)
C60.0414 (13)0.0403 (12)0.0429 (14)0.0002 (10)0.0125 (11)0.0123 (10)
C70.0460 (14)0.0445 (13)0.0404 (13)−0.0023 (11)0.0077 (11)0.0121 (11)
C80.0447 (14)0.0465 (13)0.0443 (14)0.0037 (11)0.0114 (11)0.0166 (11)
C90.0435 (14)0.0525 (14)0.0516 (15)0.0037 (11)0.0138 (11)0.0239 (12)
C100.091 (2)0.0616 (16)0.0548 (17)0.0085 (15)0.0238 (15)0.0228 (14)
C110.132 (3)0.098 (2)0.0558 (19)0.021 (2)0.0343 (18)0.0376 (18)
C120.120 (3)0.090 (2)0.084 (2)0.027 (2)0.042 (2)0.057 (2)
C130.090 (2)0.0635 (17)0.088 (2)0.0216 (15)0.0353 (18)0.0445 (17)
C140.0726 (18)0.0569 (16)0.0619 (17)0.0134 (13)0.0242 (14)0.0274 (14)
C150.0450 (13)0.0386 (12)0.0415 (13)−0.0004 (10)0.0093 (11)0.0154 (10)
C160.0562 (15)0.0434 (13)0.0432 (14)−0.0009 (11)0.0111 (11)0.0195 (11)
C170.0489 (14)0.0437 (13)0.0372 (13)0.0027 (11)0.0072 (11)0.0157 (11)
C180.0556 (15)0.0380 (12)0.0382 (13)0.0017 (11)0.0077 (12)0.0131 (10)
C190.0613 (17)0.0722 (17)0.0494 (17)0.0066 (14)0.0105 (14)0.0167 (14)
C200.079 (2)0.0789 (19)0.0476 (17)0.0149 (16)0.0219 (15)0.0116 (14)
C210.082 (2)0.0518 (15)0.0399 (15)0.0044 (14)0.0058 (15)0.0136 (12)
C220.0591 (17)0.0623 (16)0.0521 (17)0.0051 (13)−0.0022 (14)0.0172 (13)
C230.0582 (17)0.0623 (16)0.0450 (15)0.0106 (13)0.0088 (13)0.0110 (12)
C240.0507 (15)0.0502 (14)0.0573 (16)−0.0097 (12)0.0108 (12)0.0239 (12)
C250.0542 (17)0.0721 (17)0.0763 (19)0.0010 (14)0.0205 (14)0.0266 (14)
C260.0722 (18)0.0486 (15)0.0715 (18)−0.0080 (13)0.0199 (15)0.0092 (13)
C270.0692 (17)0.0422 (14)0.0496 (15)−0.0176 (13)−0.0001 (13)0.0164 (12)
C280.107 (3)0.091 (2)0.120 (3)−0.0275 (19)0.048 (2)0.038 (2)
C290.106 (2)0.0529 (17)0.105 (3)0.0048 (17)0.016 (2)0.0243 (16)

Geometric parameters (Å, °)

N1—C11.341 (2)C15—C161.397 (3)
N1—C51.343 (2)C16—C171.364 (3)
N2—C61.335 (2)C16—H160.9300
N2—N31.355 (2)C17—C181.474 (3)
N3—C81.363 (2)C18—C191.377 (3)
N3—C241.474 (2)C18—C231.378 (3)
N4—C151.332 (2)C19—C201.383 (3)
N4—N51.348 (2)C19—H190.9300
N5—C171.358 (3)C20—C211.357 (3)
N5—C271.463 (2)C20—H200.9300
C1—C21.385 (3)C21—C221.362 (3)
C1—C151.462 (3)C21—H210.9300
C2—C31.368 (3)C22—C231.377 (3)
C2—H20.9300C22—H220.9300
C3—C41.370 (3)C23—H230.9300
C3—H30.9300C24—C251.507 (3)
C4—C51.380 (3)C24—C261.510 (3)
C4—H40.9300C24—H240.9800
C5—C61.473 (3)C25—H25A0.9600
C6—C71.387 (3)C25—H25B0.9600
C7—C81.373 (3)C25—H25C0.9600
C7—H70.9300C26—H26A0.9600
C8—C91.474 (3)C26—H26B0.9600
C9—C101.380 (3)C26—H26C0.9600
C9—C141.381 (3)C27—C281.501 (4)
C10—C111.378 (3)C27—C291.506 (3)
C10—H100.9300C27—H270.9800
C11—C121.369 (4)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—C131.351 (4)C28—H28C0.9600
C12—H120.9300C29—H29A0.9600
C13—C141.374 (3)C29—H29B0.9600
C13—H130.9300C29—H29C0.9600
C14—H140.9300
C1—N1—C5117.55 (18)N5—C17—C16105.95 (18)
C6—N2—N3104.67 (17)N5—C17—C18122.37 (18)
N2—N3—C8112.07 (16)C16—C17—C18131.7 (2)
N2—N3—C24117.84 (17)C19—C18—C23118.0 (2)
C8—N3—C24129.40 (18)C19—C18—C17120.6 (2)
C15—N4—N5104.86 (17)C23—C18—C17121.5 (2)
N4—N5—C17112.34 (16)C18—C19—C20120.6 (2)
N4—N5—C27119.23 (17)C18—C19—H19119.7
C17—N5—C27127.95 (18)C20—C19—H19119.7
N1—C1—C2122.68 (18)C21—C20—C19120.4 (3)
N1—C1—C15116.11 (18)C21—C20—H20119.8
C2—C1—C15121.20 (18)C19—C20—H20119.8
C3—C2—C1118.8 (2)C20—C21—C22120.0 (2)
C3—C2—H2120.6C20—C21—H21120.0
C1—C2—H2120.6C22—C21—H21120.0
C2—C3—C4119.5 (2)C21—C22—C23119.9 (2)
C2—C3—H3120.3C21—C22—H22120.1
C4—C3—H3120.3C23—C22—H22120.1
C3—C4—C5118.91 (19)C22—C23—C18121.2 (3)
C3—C4—H4120.5C22—C23—H23119.4
C5—C4—H4120.5C18—C23—H23119.4
N1—C5—C4122.63 (18)N3—C24—C25110.52 (18)
N1—C5—C6114.89 (18)N3—C24—C26110.4 (2)
C4—C5—C6122.47 (18)C25—C24—C26113.2 (2)
N2—C6—C7111.30 (18)N3—C24—H24107.5
N2—C6—C5120.23 (19)C25—C24—H24107.5
C7—C6—C5128.46 (19)C26—C24—H24107.5
C8—C7—C6106.11 (18)C24—C25—H25A109.5
C8—C7—H7126.9C24—C25—H25B109.5
C6—C7—H7126.9H25A—C25—H25B109.5
N3—C8—C7105.83 (18)C24—C25—H25C109.5
N3—C8—C9123.87 (18)H25A—C25—H25C109.5
C7—C8—C9130.3 (2)H25B—C25—H25C109.5
C10—C9—C14117.7 (2)C24—C26—H26A109.5
C10—C9—C8119.4 (2)C24—C26—H26B109.5
C14—C9—C8122.9 (2)H26A—C26—H26B109.5
C11—C10—C9120.6 (3)C24—C26—H26C109.5
C11—C10—H10119.7H26A—C26—H26C109.5
C9—C10—H10119.7H26B—C26—H26C109.5
C12—C11—C10120.1 (3)N5—C27—C28110.2 (2)
C12—C11—H11120.0N5—C27—C29109.6 (2)
C10—C11—H11120.0C28—C27—C29112.5 (2)
C13—C12—C11120.3 (3)N5—C27—H27108.2
C13—C12—H12119.8C28—C27—H27108.2
C11—C12—H12119.8C29—C27—H27108.2
C12—C13—C14119.7 (3)C27—C28—H28A109.5
C12—C13—H13120.1C27—C28—H28B109.5
C14—C13—H13120.1H28A—C28—H28B109.5
C13—C14—C9121.5 (2)C27—C28—H28C109.5
C13—C14—H14119.2H28A—C28—H28C109.5
C9—C14—H14119.2H28B—C28—H28C109.5
N4—C15—C16110.78 (18)C27—C29—H29A109.5
N4—C15—C1120.71 (19)C27—C29—H29B109.5
C16—C15—C1128.51 (19)H29A—C29—H29B109.5
C17—C16—C15106.06 (18)C27—C29—H29C109.5
C17—C16—H16127.0H29A—C29—H29C109.5
C15—C16—H16127.0H29B—C29—H29C109.5
C6—N2—N3—C8−0.6 (2)C12—C13—C14—C91.5 (4)
C6—N2—N3—C24−171.95 (18)C10—C9—C14—C13−2.3 (4)
C15—N4—N5—C171.2 (2)C8—C9—C14—C13−179.6 (2)
C15—N4—N5—C27173.9 (2)N5—N4—C15—C16−0.8 (2)
C5—N1—C1—C20.3 (3)N5—N4—C15—C1179.42 (19)
C5—N1—C1—C15−178.48 (18)N1—C1—C15—N4−176.9 (2)
N1—C1—C2—C30.0 (3)C2—C1—C15—N44.3 (3)
C15—C1—C2—C3178.8 (2)N1—C1—C15—C163.4 (3)
C1—C2—C3—C40.3 (3)C2—C1—C15—C16−175.4 (2)
C2—C3—C4—C5−1.1 (3)N4—C15—C16—C170.2 (3)
C1—N1—C5—C4−1.1 (3)C1—C15—C16—C17179.9 (2)
C1—N1—C5—C6179.08 (18)N4—N5—C17—C16−1.1 (3)
C3—C4—C5—N11.5 (3)C27—N5—C17—C16−173.0 (2)
C3—C4—C5—C6−178.7 (2)N4—N5—C17—C18179.9 (2)
N3—N2—C6—C70.9 (2)C27—N5—C17—C188.0 (4)
N3—N2—C6—C5179.74 (19)C15—C16—C17—N50.5 (2)
N1—C5—C6—N2−164.57 (19)C15—C16—C17—C18179.4 (2)
C4—C5—C6—N215.6 (3)N5—C17—C18—C19−107.9 (3)
N1—C5—C6—C714.0 (3)C16—C17—C18—C1973.4 (3)
C4—C5—C6—C7−165.8 (2)N5—C17—C18—C2373.3 (3)
N2—C6—C7—C8−0.9 (3)C16—C17—C18—C23−105.4 (3)
C5—C6—C7—C8−179.6 (2)C23—C18—C19—C20−1.4 (4)
N2—N3—C8—C70.0 (2)C17—C18—C19—C20179.8 (2)
C24—N3—C8—C7170.1 (2)C18—C19—C20—C210.8 (4)
N2—N3—C8—C9178.7 (2)C19—C20—C21—C22−0.1 (4)
C24—N3—C8—C9−11.2 (4)C20—C21—C22—C230.1 (4)
C6—C7—C8—N30.5 (2)C21—C22—C23—C18−0.7 (4)
C6—C7—C8—C9−178.1 (2)C19—C18—C23—C221.4 (3)
N3—C8—C9—C10135.3 (2)C17—C18—C23—C22−179.8 (2)
C7—C8—C9—C10−46.4 (4)N2—N3—C24—C2557.3 (3)
N3—C8—C9—C14−47.5 (3)C8—N3—C24—C25−112.3 (3)
C7—C8—C9—C14130.9 (3)N2—N3—C24—C26−68.7 (3)
C14—C9—C10—C111.4 (4)C8—N3—C24—C26121.7 (2)
C8—C9—C10—C11178.8 (2)N4—N5—C27—C2852.8 (3)
C9—C10—C11—C120.3 (5)C17—N5—C27—C28−135.8 (3)
C10—C11—C12—C13−1.2 (5)N4—N5—C27—C29−71.5 (3)
C11—C12—C13—C140.3 (5)C17—N5—C27—C2999.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H20···Cg1i0.932.863.710 (3)153

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2264).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dias, H. V. R. & Gamage, C. S. P. (2007). Angew. Chem. Int. Ed.46, 2192–2194. [PubMed]
  • Sheldrick, G. M. (2001). SHELXTL Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2002). SADABS Version 2.03. University of Göttingen, Germany.
  • Westrip, S. P. (2008). publCIF. In preparation.
  • Zhou, Y. B. & Chen, W. Z. (2007). Dalton Trans. pp. 5123–5125. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography