PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o225.
Published online 2007 December 6. doi:  10.1107/S1600536807064999
PMCID: PMC2915286

4′-(2,5,8,11,14-Penta­oxabicyclo­[13.4.0]nona­deca-15,17,19-trien-17-yl­oxy)-2,2′:6′,2′′-terpyridine: a powder study

Abstract

The central pyridine ring of the 2,2′:6′,2′′-terpyridine fragment of the title compound, C29H29N3O6, forms dihedral angles of 5.2 (5), 10.1 (5) and 86.0 (6)°, respectively, with the two outer pyridine rings and the benzene ring of the benzo-15-crown-5 fragment.

Related literature

For related crystal structures determined from synchrotron powder diffraction data, see Dorokhov et al. (2007 [triangle]). For useful applications of 2,2′:6′,2"-terpyridine derivatives, see Andres et al. (2003 [triangle]). For details of the synthesis of the title compound, see: Constable & Ward (1990 [triangle]); Chitta et al. (2004 [triangle]); Kobayashi (2001 [triangle]). For details of the indexing algorithm, see Visser (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o225-scheme1.jpg

Experimental

Crystal data

  • C29H29N3O6
  • M r = 515.55
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o225-efi1.jpg
  • a = 58.347 (11) Å
  • b = 33.712 (3) Å
  • c = 5.3211 (8) Å
  • V = 10467 (3) Å3
  • Z = 16
  • Cu Kα1 radiation
  • λ = 1.54059 Å
  • μ = 0.76 mm−1
  • T = 295 (2) K
  • Specimen shape: flat sheet
  • 15 × 1 × 1 mm
  • Specimen prepared at 295 (2) K and 101 kPa
  • Particle morphology: no specific habit, colourless

Data collection

  • G670 Guinier camera diffractometer
  • Specimen mounting: thin layer in the specimen holder of the camera
  • Specimen mounted in transmission mode
  • Scan method: continuous
  • Absorption correction: none
  • min = 4.5, 2θmax = 75.0°
  • Increment in 2θ = 0.01°

Refinement

  • R p = 0.019
  • R wp = 0.024
  • R exp = 0.018
  • R B = 0.023
  • S = 1.36
  • Excluded region(s): none
  • Profile function: split-type pseudo-Voigt (Toraya, 1986 [triangle])
  • 148 parameters
  • 173 restraints
  • H-atom parameters not refined
  • Preferred orientation correction: none

Data collection: local program (Huber, 2002 [triangle]); cell refinement: MRIA (Zlokazov & Chernyshev, 1992 [triangle]); data reduction: local program (Huber, 2002 [triangle]); program(s) used to solve structure: grid search (Chernyshev & Schenk, 1998 [triangle]); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: MRIA, SHELXL97 (Sheldrick, 1997 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064999/ya2062sup1.cif

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536807064999/ya2062Isup2.rtv

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Ability of 2,2':6',2"-terpyridines to form complexes with transition metals, such as Zn(II), Fe(II), Co(II), Ni(II) and Ru(II) is widely used in supramolecular chemistry to control self organization processes. Introduction of additional fragments with various coordinating groups to a molecule of 2,2':6',2"-terpyridine opens broad prospects for purposeful design of supramolecular compounds (Andres et al., 2003). 4'-(Benzo-15-crown-5) substituted 2,2':6',2"-terpyridines represent a new interesting class of compounds involving both terpyridine fragment, which selectively binds the d-element cations, and benzo-15-crown-5 with unique ability for complexation of cations of alkaline, alkaline-earth metals as well as those of organic amines. Compounds of this class offer new opportunities for use of metal-ligand interactions for controllable assembly of the supramolecular complexes. We present here the structure of title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are comparable with those reported earlier for the related compounds (Dorokhov et al., 2007). The six-membered rings N2/C5—C9 (A), N3/C10—C14 (B), N4/C15—C19 (C) and C25—C30 (D) form the following dihedral angles - A/B 5.2 (5)°, A/C 10.1 (5)° and A/D 86.0 (6)°.

Experimental

The synthesis of 2,2':6',2"-terpyridine was carried out according to Constable & Ward (1990). 4'-Hydroxy-benzo-15-crown-5 was obtained on the basis of commercially accessible benzo-15-crown-5 by the formylation reaction (Chitta et al., 2004) and the subsequent oxidizing decarbonylation (Kobayashi, 2001). 4'-(4'''-Benzo-15-crown-5)-oxy-2,2':6',2''-terpyridine has been synthesized using reaction of nucleophilic replacement of 4'-chloro-2,2':6',2''-terpyridine with 4'-hydroxy-benzo-15-crown-5 in the dry DMSO in the presence of a base (KOH).

The synthesis of 4'-(4'''-benzo-15-crown-5)-oxy-2,2':6',2''-terpyridine (Scheme 2): to a stirred suspension of powdered KOH (890 mg, 15,90 mmol) in dry DMSO (12 ml) in the argon atmosphere at 70 °C, the 4'-hydroxy-benzo-15-crown-5 (928 mg, 3,269 mmol) was added. After 30 min, 4'-chloro-2,2':6',2''-terpyridine (873 mg, 3,269 mmol) was added and the mixture was stirred for 8 h at 70 °C and then poured into 150 ml of ice water. The water phase was extracted with chloroform (150 x 100 x 50 x 50 ml), dried over MgSO4 and evaporated in vacuum. The residue (20 ml) was purified by column chromatography on the neutral Al2O3 (CHCl3). After evaporation, the product, obtained as a yellowish oil, was crystallized from diethyl ether, then filtered and washed on the filter by the cooled diethyl ether, recrystallized from methyl alcohol (25 ml) and dried in vacuum at 60 °C. The yield of the target product as white solid was 623 mg (37,2%). (M. p. = 151 °C)

Refinement

During the exposure, the specimen was spun in its plane to improve particle statistics. The orthorhombic unit-cell dimensions were determined with the indexing program ITO (Visser, 1969), M20=44, using the first 35 peak positions. The space group Fdd2 was chosen on the basis of systematic extinction rules and confirmed later by the crystal structure solution. The structure of (I) was solved by the systematic grid search procedure (Chernyshev & Schenk, 1998) and refined following the methodology described in detail elsewhere (Dorokhov et al., 2007) by the subsequent bond-restrained Rietveld refinement with the program MRIA (Zlokazov & Chernyshev, 1992). All O atoms were refined isotropically with the overall Uiso parameter. The Uiso for the rest of non-H atoms were fixed at 0.051 Å2. All H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Figures

Fig. 1.
The molecular structure of (I) with the atomic numbering and 50% displacement spheres. H atoms omitted for clarity.
Fig. 2.
The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.
Fig. 3.
The formation of the title compound.

Crystal data

C29H29N3O6Dx = 1.309 Mg m3
Mr = 515.55Cu Kα1 radiation λ = 1.54059 Å
Orthorhombic, Fdd2µ = 0.76 mm1
a = 58.347 (11) ÅT = 295 (2) K
b = 33.712 (3) ÅSpecimen shape: flat_sheet
c = 5.3211 (8) Å15 × 1 × 1 mm
V = 10467 (3) Å3Specimen prepared at 101 kPa
Z = 16Specimen prepared at 295(2) K
F000 = 4352Particle morphology: no specific habit, colourless

Data collection

Guinier camera G670 diffractometerScan method: continuous
Radiation source: line-focus sealed tubeT = 295(2) K
Monochromator: Curved Germanium (111)min = 4.50, 2θmax = 75.00º
Specimen mounting: thin layer in the specimen holder of the cameraIncrement in 2θ = 0.01º
Specimen mounted in transmission modeIncrement in 2θ = 0.01º

Refinement

Refinement on InetProfile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle148 parameters
Rp = 0.019173 restraints
Rwp = 0.0247 constraints
Rexp = 0.018H-atom parameters not refined
RB = 0.023Weighting scheme based on measured s.u.'s ?
S = 1.36(Δ/σ)max = 0.007
Wavelength of incident radiation: 1.54059 ÅExtinction correction: none
Excluded region(s): nonePreferred orientation correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.0046 (3)0.6614 (4)0.13460.067 (3)*
N20.0097 (3)0.5679 (6)0.655 (3)0.051*
N30.0633 (3)0.5704 (6)0.288 (4)0.051*
N4−0.0478 (3)0.6009 (6)0.858 (4)0.051*
C50.0253 (4)0.5800 (7)0.478 (4)0.051*
C60.0209 (4)0.6110 (7)0.301 (4)0.051*
H60.03190.61800.18240.061*
C70.0000 (4)0.6304 (7)0.310 (4)0.051*
C8−0.0160 (4)0.6196 (7)0.486 (4)0.051*
H8−0.03010.63250.49400.061*
C9−0.0108 (4)0.5887 (7)0.654 (4)0.051*
C100.0482 (4)0.5595 (7)0.471 (4)0.051*
C110.0544 (4)0.5322 (6)0.660 (4)0.051*
H110.04450.52700.79340.061*
C120.0756 (3)0.5132 (7)0.645 (4)0.051*
H120.07980.49450.76430.061*
C130.0905 (4)0.5225 (7)0.448 (4)0.051*
H130.10450.50960.42990.061*
C140.0837 (4)0.5518 (7)0.278 (4)0.051*
H140.09380.55890.15100.061*
C15−0.0286 (3)0.5771 (6)0.840 (3)0.051*
C16−0.0263 (4)0.5425 (7)0.984 (4)0.051*
H16−0.01370.52590.96150.061*
C17−0.0431 (4)0.5332 (7)1.161 (4)0.051*
H17−0.04150.51101.26280.061*
C18−0.0624 (4)0.5579 (7)1.183 (4)0.051*
H18−0.07440.55161.29090.061*
C19−0.0630 (4)0.5925 (7)1.035 (4)0.051*
H19−0.07480.61061.06310.061*
O20−0.0608 (2)0.7962 (4)0.187 (3)0.067 (3)*
O21−0.0911 (2)0.8612 (4)0.246 (3)0.067 (3)*
O22−0.1263 (3)0.8329 (4)−0.111 (3)0.067 (3)*
O23−0.1184 (2)0.7296 (4)−0.314 (3)0.067 (3)*
O24−0.0706 (2)0.7416 (4)−0.138 (3)0.067 (3)*
C25−0.0511 (4)0.7344 (7)−0.001 (4)0.051*
C26−0.0454 (4)0.7653 (7)0.176 (4)0.051*
C27−0.0263 (3)0.7608 (7)0.327 (4)0.051*
H27−0.02150.78160.42910.061*
C28−0.0139 (4)0.7242 (7)0.325 (4)0.051*
H28−0.00250.71960.44330.061*
C29−0.0190 (4)0.6956 (8)0.146 (4)0.051*
C30−0.0376 (3)0.6998 (6)−0.014 (4)0.051*
H30−0.04110.6800−0.12920.061*
C31−0.0540 (4)0.8312 (7)0.328 (4)0.051*
H31A−0.04440.82350.46890.061*
H31B−0.04530.84900.22150.061*
C32−0.0743 (4)0.8510 (7)0.419 (4)0.051*
H32A−0.08130.83410.54470.061*
H32B−0.06950.87510.50380.061*
C33−0.1144 (3)0.8536 (7)0.324 (4)0.051*
H33A−0.11880.87390.44370.061*
H33B−0.11470.82840.41190.061*
C34−0.1324 (4)0.8524 (7)0.116 (4)0.051*
H34A−0.14600.83960.18230.061*
H34B−0.13660.87950.07500.061*
C35−0.1172 (4)0.7936 (7)−0.091 (4)0.051*
H35A−0.12020.78290.07540.061*
H35B−0.10080.7940−0.11770.061*
C36−0.1289 (4)0.7680 (7)−0.291 (4)0.051*
H36A−0.14490.7647−0.24770.061*
H36B−0.12810.7815−0.45180.061*
C37−0.0982 (4)0.7268 (6)−0.462 (4)0.051*
H37A−0.09450.7529−0.52730.061*
H37B−0.10120.7095−0.60390.061*
C38−0.0776 (4)0.7110 (6)−0.319 (4)0.051*
H38A−0.08160.6867−0.23140.061*
H38B−0.06510.7053−0.43410.061*

Geometric parameters (Å, °)

O1—C71.43 (3)C28—C291.39 (3)
O1—C291.43 (3)C29—C301.39 (3)
O20—C261.38 (3)C31—C321.44 (3)
O20—C311.45 (3)C33—C341.53 (3)
O21—C321.39 (3)C35—C361.53 (3)
O21—C331.45 (2)C37—C381.52 (3)
O22—C341.42 (3)C6—H60.93
O22—C351.43 (3)C8—H80.93
O23—C361.44 (3)C11—H110.93
O23—C371.42 (3)C12—H120.93
O24—C251.37 (3)C13—H130.93
O24—C381.47 (3)C14—H140.93
N2—C51.38 (3)C16—H160.93
N2—C91.39 (3)C17—H170.93
N3—C101.36 (3)C18—H180.93
N3—C141.35 (3)C19—H190.93
N4—C151.38 (3)C27—H270.93
N4—C191.32 (3)C28—H280.93
C5—C61.43 (3)C30—H300.93
C5—C101.50 (3)C31—H31A0.97
C6—C71.38 (3)C31—H31B0.97
C7—C81.37 (3)C32—H32A0.97
C8—C91.41 (3)C32—H32B0.97
C9—C151.49 (3)C33—H33A0.97
C10—C111.41 (3)C33—H33B0.97
C11—C121.40 (3)C34—H34A0.97
C12—C131.40 (3)C34—H34B0.97
C13—C141.39 (3)C35—H35A0.97
C15—C161.40 (3)C35—H35B0.97
C16—C171.40 (3)C36—H36A0.97
C17—C181.41 (3)C36—H36B0.97
C18—C191.41 (3)C37—H37A0.97
C25—C261.44 (3)C37—H37B0.97
C25—C301.41 (3)C38—H38A0.97
C26—C271.38 (3)C38—H38B0.97
C27—C281.43 (3)
C7—O1—C29132.4 (14)C11—C12—H12120
C26—O20—C31117.3 (16)C13—C12—H12120
C32—O21—C33115.2 (16)C12—C13—H13121
C34—O22—C35117.3 (16)C14—C13—H13121
C36—O23—C37117.4 (15)N3—C14—H14118
C25—O24—C38117.0 (16)C13—C14—H14118
C5—N2—C9114.7 (19)C15—C16—H16120
C10—N3—C14118.3 (19)C17—C16—H16120
C15—N4—C19117.9 (19)C16—C17—H17120
N2—C5—C6123 (2)C18—C17—H17121
N2—C5—C10117.8 (19)C17—C18—H18121
C6—C5—C10118.8 (19)C19—C18—H18121
C5—C6—C7119 (2)N4—C19—H19118
O1—C7—C6119.3 (19)C18—C19—H19118
O1—C7—C8121 (2)C26—C27—H27120
C6—C7—C8120 (2)C28—C27—H27120
C7—C8—C9119 (2)C27—C28—H28120
N2—C9—C8124 (2)C29—C28—H28120
N2—C9—C15117.8 (19)C25—C30—H30120
C8—C9—C15118 (2)C29—C30—H30120
N3—C10—C5117.7 (16)O20—C31—H31A110
N3—C10—C11121 (2)O20—C31—H31B110
C5—C10—C11120.8 (19)C32—C31—H31A110
C10—C11—C12119 (2)C32—C31—H31B110
C11—C12—C13119 (2)H31A—C31—H31B108
C12—C13—C14118 (2)O21—C32—H32A108
N3—C14—C13124 (2)O21—C32—H32B108
N4—C15—C9117.4 (18)C31—C32—H32A108
N4—C15—C16121.5 (18)C31—C32—H32B108
C9—C15—C16121.0 (18)H32A—C32—H32B107
C15—C16—C17119 (2)O21—C33—H33A108
C16—C17—C18119 (2)O21—C33—H33B108
C17—C18—C19118 (2)C34—C33—H33A108
N4—C19—C18124 (2)C34—C33—H33B108
O24—C25—C26114.2 (19)H33A—C33—H33B107
O24—C25—C30125.7 (19)O22—C34—H34A108
C26—C25—C30120 (2)O22—C34—H34B108
O20—C26—C25115.1 (19)C33—C34—H34A108
O20—C26—C27126 (2)C33—C34—H34B108
C25—C26—C27119 (2)H34A—C34—H34B107
C26—C27—C28120 (2)O22—C35—H35A110
C27—C28—C29120 (2)O22—C35—H35B110
O1—C29—C28117.6 (19)C36—C35—H35A110
O1—C29—C30121 (2)C36—C35—H35B110
C28—C29—C30121 (2)H35A—C35—H35B108
C25—C30—C29119 (2)O23—C36—H36A109
O20—C31—C32108.9 (18)O23—C36—H36B109
O21—C32—C31118.0 (18)C35—C36—H36A109
O21—C33—C34116.2 (17)C35—C36—H36B109
O22—C34—C33117.2 (19)H36A—C36—H36B108
O22—C35—C36107.7 (18)O23—C37—H37A109
O23—C36—C35112.1 (18)O23—C37—H37B109
O23—C37—C38113.7 (17)C38—C37—H37A109
O24—C38—C37107.6 (16)C38—C37—H37B109
C5—C6—H6120H37A—C37—H37B108
C7—C6—H6120O24—C38—H38A110
C7—C8—H8120O24—C38—H38B110
C9—C8—H8120C37—C38—H38A110
C10—C11—H11120C37—C38—H38B110
C12—C11—H11120H38A—C38—H38B108

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2062).

References

  • Andres, P. R., Hofmeier, H., Lohmeijer Bas, G. G. & Schubert, U. S. (2003). Synthesis, 18, 2865–2871.
  • Chernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr.213, 1–3.
  • Chitta, R., Rogers, L. M., Wanklin, A., Karr, P. A., Kahol, P. K., Zandler, M. E. & D’Souza, F. (2004). Inorg. Chem.43, 6969–6978. [PubMed]
  • Constable, E. C. & Ward, M. D. (1990). J. Chem. Soc. Dalton Trans. pp. 1405–1409.
  • Dorokhov, A. V., Chernyshov, D. Y., Burlov, A. S., Garnovskii, A. D., Ivanova, I. S., Pyatova, E. N., Tsivadze, A. Y., Aslanov, L. A. & Chernyshev, V. V. (2007). Acta Cryst. B63, 402–410. [PubMed]
  • Huber (2002). Software for G670 Imaging Plate Guinier Camera Version 4.3.16. Huber Diffraktionstechnik GmbH, Rimsting, Germany.
  • Kobayashi, N. (2001). Coord. Chem. Rev.219–221, 99–123.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Toraya, H. (1986). J. Appl. Cryst.19, 440–447.
  • Visser, J. W. (1969). J. Appl. Cryst.2, 89–95.
  • Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst.25, 447–451.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography