PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o220.
Published online 2007 December 6. doi:  10.1107/S1600536807064641
PMCID: PMC2915281

4-Bromo-2,6-dimethyl­aniline

Abstract

The asymmetric unit of the title compound, C8H10BrN, contains two independent mol­ecules. The Br, N and methyl group C atoms lie in the benzene ring planes. In the crystal structure, N—H(...)N hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Heravi et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o220-scheme1.jpg

Experimental

Crystal data

  • C8H10BrN
  • M r = 200.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o220-efi1.jpg
  • a = 20.141 (4) Å
  • b = 5.150 (1) Å
  • c = 17.300 (4) Å
  • β = 111.53 (3)°
  • V = 1669.3 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.85 mm−1
  • T = 294 (2) K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.211, T max = 0.379
  • 3392 measured reflections
  • 3268 independent reflections
  • 1523 reflections with I > 2σ(I)
  • R int = 0.040
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.166
  • S = 1.06
  • 3268 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Bruker, 2000 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064641/hk2405sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064641/hk2405Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, (I), contains amino and halogen groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymers and organometallic chemistry (Heravi et al., 2005). We herein report its crystal structure.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The Br, N and C atoms of the methyl groups lie in the benzene ring planes.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound, (I), was prepared by the literature method (Heravi et al., 2005). The crystals were obtained by dissolving (I) (0.5 g) in hexane (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C8H10BrNF000 = 800
Mr = 200.07Dx = 1.592 Mg m3
Monoclinic, P21/cMelting point: 321 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 20.141 (4) ÅCell parameters from 25 reflections
b = 5.150 (1) Åθ = 10–13º
c = 17.300 (4) ŵ = 4.85 mm1
β = 111.53 (3)ºT = 294 (2) K
V = 1669.3 (7) Å3Needle, colorless
Z = 80.40 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.040
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 1.1º
T = 294(2) Kh = −24→23
ω/2θ scansk = 0→6
Absorption correction: ψ scan(North et al., 1968)l = 0→21
Tmin = 0.211, Tmax = 0.3793 standard reflections
3392 measured reflections every 120 min
3268 independent reflections intensity decay: none
1523 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.166  w = 1/[σ2(Fo2) + (0.050P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3268 reflectionsΔρmax = 0.24 e Å3
183 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.08550 (5)0.9358 (3)0.10030 (5)0.1246 (5)
Br20.43509 (5)0.5936 (2)0.34568 (6)0.1157 (4)
N10.1751 (3)1.3344 (13)0.4526 (4)0.100 (2)
H1A0.20921.44550.47080.120*
H1B0.15571.27260.48540.120*
N20.7343 (3)0.1666 (14)0.4436 (4)0.102 (2)
H2D0.76350.23000.42260.123*
H2E0.74820.04630.48050.123*
C10.2375 (4)1.5677 (16)0.3431 (5)0.103 (3)
H1C0.25401.60650.29890.154*
H1D0.27711.51240.39120.154*
H1E0.21651.72020.35650.154*
C20.0684 (4)0.9407 (18)0.4006 (5)0.103 (3)
H2A0.03540.80590.37270.154*
H2B0.04371.07370.41830.154*
H2C0.10560.86920.44820.154*
C30.1002 (4)1.0549 (18)0.3425 (5)0.086 (2)
C40.0812 (4)0.9643 (17)0.2630 (5)0.090 (2)
H4A0.04750.83240.24480.108*
C50.1113 (4)1.066 (2)0.2090 (5)0.095 (2)
C60.1609 (4)1.2610 (17)0.2362 (4)0.086 (2)
H6A0.18031.33250.19980.103*
C70.1822 (4)1.3524 (15)0.3159 (5)0.079 (2)
C80.1512 (4)1.2540 (18)0.3696 (5)0.086 (2)
C90.6901 (4)0.5486 (19)0.3171 (5)0.108 (3)
H9A0.73320.61280.35860.163*
H9B0.66730.68580.27900.163*
H9C0.70130.40840.28740.163*
C100.6417 (4)−0.0549 (16)0.5187 (5)0.101 (3)
H10A0.6562−0.20250.49480.152*
H10B0.6024−0.10230.53460.152*
H10C0.68100.00230.56690.152*
C110.6190 (4)0.1636 (15)0.4553 (5)0.083 (2)
C120.5507 (4)0.2581 (19)0.4319 (5)0.093 (2)
H12A0.51930.19060.45500.112*
C130.5290 (4)0.4543 (18)0.3736 (5)0.089 (2)
C140.5726 (4)0.5468 (19)0.3354 (5)0.097 (3)
H14A0.55610.67270.29420.116*
C150.6406 (5)0.4529 (17)0.3581 (5)0.087 (2)
C160.6641 (4)0.2596 (18)0.4174 (5)0.087 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1232 (8)0.1683 (11)0.0770 (6)−0.0228 (7)0.0304 (5)−0.0229 (6)
Br20.0927 (6)0.1499 (9)0.0949 (7)0.0165 (6)0.0231 (5)0.0050 (7)
N10.096 (4)0.113 (6)0.087 (5)−0.010 (4)0.029 (4)−0.010 (4)
N20.092 (4)0.116 (6)0.095 (5)0.001 (4)0.028 (4)−0.003 (4)
C10.098 (6)0.088 (6)0.117 (7)−0.006 (5)0.033 (5)−0.009 (6)
C20.093 (5)0.119 (7)0.094 (6)−0.004 (5)0.032 (5)0.013 (6)
C30.077 (4)0.106 (6)0.070 (5)0.002 (5)0.023 (4)0.006 (5)
C40.084 (5)0.091 (6)0.085 (5)0.005 (4)0.020 (4)−0.002 (5)
C50.092 (5)0.126 (7)0.063 (4)−0.007 (5)0.024 (4)0.002 (5)
C60.086 (5)0.105 (6)0.065 (5)−0.007 (5)0.026 (4)0.008 (5)
C70.073 (4)0.085 (5)0.074 (4)−0.003 (4)0.021 (3)0.005 (4)
C80.082 (4)0.095 (5)0.073 (4)0.007 (4)0.020 (4)0.002 (4)
C90.105 (6)0.136 (8)0.083 (5)0.006 (6)0.033 (5)0.000 (6)
C100.109 (6)0.091 (6)0.092 (6)−0.002 (5)0.023 (5)−0.008 (5)
C110.080 (5)0.078 (6)0.076 (5)−0.009 (4)0.009 (4)−0.008 (4)
C120.084 (5)0.109 (7)0.077 (5)−0.003 (5)0.019 (4)0.002 (5)
C130.090 (5)0.104 (7)0.062 (4)0.014 (5)0.013 (4)−0.013 (5)
C140.095 (6)0.120 (7)0.071 (5)0.001 (5)0.025 (4)0.006 (5)
C150.094 (5)0.095 (6)0.071 (5)−0.009 (5)0.029 (4)−0.010 (5)
C160.079 (5)0.104 (6)0.075 (5)−0.009 (5)0.023 (4)−0.014 (5)

Geometric parameters (Å, °)

Br1—C51.880 (8)Br2—C131.913 (8)
N1—C81.399 (9)N2—C161.403 (9)
N1—H1A0.8600N2—H2D0.8600
N1—H1B0.8600N2—H2E0.8600
C1—C71.520 (10)C9—C151.503 (11)
C1—H1C0.9600C9—H9A0.9600
C1—H1D0.9600C9—H9B0.9600
C1—H1E0.9600C9—H9C0.9600
C2—C31.497 (10)C10—C111.520 (10)
C2—H2A0.9600C10—H10A0.9600
C2—H2B0.9600C10—H10B0.9600
C2—H2C0.9600C10—H10C0.9600
C3—C41.367 (10)C11—C121.373 (10)
C3—C81.405 (11)C11—C161.391 (10)
C4—C51.390 (11)C12—C131.380 (11)
C4—H4A0.9300C12—H12A0.9300
C5—C61.374 (11)C13—C141.363 (11)
C6—C71.369 (10)C14—C151.368 (10)
C6—H6A0.9300C14—H14A0.9300
C7—C81.390 (10)C15—C161.382 (11)
C8—N1—H1A120.0C16—N2—H2D120.0
C8—N1—H1B120.0C16—N2—H2E120.0
H1A—N1—H1B120.0H2D—N2—H2E120.0
C7—C1—H1C109.5C15—C9—H9A109.5
C7—C1—H1D109.5C15—C9—H9B109.5
H1C—C1—H1D109.5H9A—C9—H9B109.5
C7—C1—H1E109.5C15—C9—H9C109.5
H1C—C1—H1E109.5H9A—C9—H9C109.5
H1D—C1—H1E109.5H9B—C9—H9C109.5
C3—C2—H2A109.5C11—C10—H10A109.5
C3—C2—H2B109.5C11—C10—H10B109.5
H2A—C2—H2B109.5H10A—C10—H10B109.5
C3—C2—H2C109.5C11—C10—H10C109.5
H2A—C2—H2C109.5H10A—C10—H10C109.5
H2B—C2—H2C109.5H10B—C10—H10C109.5
C4—C3—C8119.0 (7)C12—C11—C16119.4 (8)
C4—C3—C2120.7 (8)C12—C11—C10118.6 (8)
C8—C3—C2120.3 (7)C16—C11—C10121.8 (8)
C3—C4—C5121.2 (8)C11—C12—C13119.3 (8)
C3—C4—H4A119.4C11—C12—H12A120.4
C5—C4—H4A119.4C13—C12—H12A120.4
C6—C5—C4119.1 (8)C14—C13—C12121.5 (8)
C6—C5—Br1120.2 (6)C14—C13—Br2119.9 (7)
C4—C5—Br1120.7 (7)C12—C13—Br2118.5 (7)
C7—C6—C5121.1 (7)C13—C14—C15119.5 (8)
C7—C6—H6A119.5C13—C14—H14A120.3
C5—C6—H6A119.5C15—C14—H14A120.3
C6—C7—C8119.8 (7)C14—C15—C16120.1 (8)
C6—C7—C1119.1 (7)C14—C15—C9121.1 (8)
C8—C7—C1121.1 (7)C16—C15—C9118.8 (8)
C7—C8—N1120.6 (8)C15—C16—C11120.1 (8)
C7—C8—C3119.7 (7)C15—C16—N2121.0 (8)
N1—C8—C3119.5 (7)C11—C16—N2118.9 (8)
C8—C3—C4—C50.0 (12)C16—C11—C12—C13−2.7 (12)
C2—C3—C4—C5−178.9 (8)C10—C11—C12—C13−179.3 (7)
C3—C4—C5—C6−0.2 (13)C11—C12—C13—C143.7 (13)
C3—C4—C5—Br1179.1 (6)C11—C12—C13—Br2−177.2 (6)
C4—C5—C6—C71.6 (13)C12—C13—C14—C15−3.4 (13)
Br1—C5—C6—C7−177.8 (6)Br2—C13—C14—C15177.5 (6)
C5—C6—C7—C8−2.6 (12)C13—C14—C15—C162.2 (13)
C5—C6—C7—C1179.6 (8)C13—C14—C15—C9179.6 (8)
C6—C7—C8—N1176.4 (7)C14—C15—C16—C11−1.2 (12)
C1—C7—C8—N1−5.9 (12)C9—C15—C16—C11−178.7 (7)
C6—C7—C8—C32.3 (12)C14—C15—C16—N2−177.9 (7)
C1—C7—C8—C3−180.0 (7)C9—C15—C16—N24.6 (12)
C4—C3—C8—C7−1.0 (12)C12—C11—C16—C151.5 (12)
C2—C3—C8—C7177.8 (7)C10—C11—C16—C15178.0 (7)
C4—C3—C8—N1−175.1 (7)C12—C11—C16—N2178.2 (7)
C2—C3—C8—N13.7 (12)C10—C11—C16—N2−5.3 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.503.279 (10)151
N2—H2E···N1ii0.862.503.287 (10)152

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2405).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Enraf–Nonius (1985). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Heravi, M. M., Abdolhosseini, N. & Oskooie, H. A. (2005). Tetrahedron Lett.46, 8959–8963.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography