PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o215.
Published online 2007 December 6. doi:  10.1107/S1600536807065117
PMCID: PMC2915276

2,6-Di-tert-butyl-4-(dimethyl­amino­meth­yl)phenol

Abstract

The title compound, C17H29NO, is an important hindered phenol derivative. The asymmetric unit contains two mol­ecules. Molecules inter­act through O—H(...)N hydrogen bonds to form a tetramer arranged around a twofold rotation axis.

Related literature

For related literature, see: Ciba-Geigy AG (1978 [triangle]); Eggensperger et al. (1974 [triangle], 1976 [triangle]); Yamazaki & Seguchi (1997 [triangle]). For the synthesis, see: Coffield (1965 [triangle]); Coffield & Mich (1965 [triangle]); Rieker et al. (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o215-scheme1.jpg

Experimental

Crystal data

  • C17H29NO
  • M r = 263.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o215-efi1.jpg
  • a = 28.731 (9) Å
  • b = 8.912 (3) Å
  • c = 16.112 (5) Å
  • β = 122.965 (5)°
  • V = 3461.4 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 294 (2) K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.978, T max = 0.989
  • 6903 measured reflections
  • 3752 independent reflections
  • 2317 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.112
  • S = 0.99
  • 3752 reflections
  • 359 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065117/dn2296sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065117/dn2296Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Start Foundation for Doctors (HY07116) of Yantai University.

supplementary crystallographic information

Comment

Hindered phenol antioxidants are widely used in polymers and lubricants. It could protect polymers by increasing both their process stability and long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997). Moreover, ester of 3,5-di-tert-butyl-4-hydroxyphenol acetic acid is one important kind of antioxidant derivative. An important route to prepare these compounds is to react an α-halo ester compound with the title compound in the presence of a strong base (Eggensperger et al., 1974, 1976; Eggensperger et al., 1976; Ciba-Geigy AG, 1978). The title compound is ususlly called a Mannich base. The title compound was prepared from 4-bromomethyl-2,6-di-tert-butyl-phenol and N,N-dimethylamine.It can also be easily obtained by a Mannich reaction from 2,6-di-tert-butylphenol,formaldehyde and dimethylamine (Coffield, 1965; Coffield & Mich, 1965).

The asymmetric unit of the title compound contains two molecules which are linked by a weak O—H···N hydrogen bond (Fig. 1). Each pseudo dimer interacts with a symmetry related one to build up like a crown arranged around axis parallele to the b axis through O—H··· hydrogen bonds (Table 1, Fig. 2).

Experimental

The 4-bromomethyl-2,6-di-tert-butyl-phenol was synthesized according to the method described by Rieker(Rieker et al.,1968). Dimethylamine (2.7 g, 0.06 mol) and 4-bromomethyl-2,6-di-tert-butyl-phenol (9.0 g, 0.03 mol) were added, with stirring to THF(60 ml)at 273 K. The reaction mixture was stirred at 273 K for a further 2 h. The solvent THF was evaporated under reduced pressure and the residual was washed with water (30 ml). The product (7.39 g) was obtained in a yield of 93.6%. Suitable crystals were obtained by slow evaporation of a mixture of ethyl acetate and ethanol.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) and 0.96 Å (methyle) with Uiso(H) = 1.2(aromatic) or 1.5(methyle)Ueq(C). H atoms of hydroxyle group were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.85 (1) Å) with Uiso(H) = 1.5Ueq(O). In the final stage of refinement, they were treated as riding on their parent O atoms.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
View of the two crystallygraphically independent molecules with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as dashed line. H atoms are represented as small spheres of arbitrary radii. ...
Fig. 2.
View of the crown formed by the assembly of four molecules through O—H···N hydrogen bonds. Dashed lines indicate the hydrogen bonds.H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C17H29NOF000 = 1168
Mr = 263.41Dx = 1.011 Mg m3
Monoclinic, C2Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2365 reflections
a = 28.731 (9) Åθ = 2.4–21.0º
b = 8.912 (3) ŵ = 0.06 mm1
c = 16.112 (5) ÅT = 294 (2) K
β = 122.965 (5)ºBlock, colourless
V = 3461.4 (19) Å30.24 × 0.22 × 0.20 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer3752 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 294(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −35→29
Tmin = 0.978, Tmax = 0.989k = −11→11
6903 measured reflectionsl = 0→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.0567P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3752 reflectionsΔρmax = 0.12 e Å3
359 parametersΔρmin = −0.18 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.96396 (9)−0.0075 (3)0.26691 (14)0.0632 (7)
H10.9775−0.08980.26290.076*
O21.20963 (9)0.0785 (3)0.24701 (16)0.0604 (6)
H21.19900.15260.20690.073*
N10.76397 (10)0.2845 (3)−0.13626 (17)0.0531 (7)
N21.05111 (10)−0.2181 (3)0.37179 (17)0.0466 (6)
C10.91498 (12)0.0341 (3)0.1819 (2)0.0442 (7)
C20.89225 (12)−0.0421 (3)0.0907 (2)0.0442 (7)
C30.84136 (12)0.0109 (4)0.0118 (2)0.0478 (8)
H30.8253−0.0377−0.04880.057*
C40.81353 (12)0.1321 (4)0.0193 (2)0.0486 (8)
C50.83809 (12)0.2039 (4)0.1103 (2)0.0488 (8)
H50.81980.28500.11630.059*
C60.88894 (12)0.1598 (3)0.1930 (2)0.0445 (8)
C70.91528 (13)0.2442 (4)0.2931 (2)0.0503 (8)
C80.91655 (15)0.1407 (4)0.3709 (2)0.0657 (10)
H8A0.93890.05420.38080.099*
H8B0.87950.10930.34810.099*
H8C0.93200.19400.43220.099*
C90.97393 (13)0.3002 (4)0.3292 (3)0.0663 (10)
H9A0.98810.35770.38870.099*
H9B0.97260.36210.27920.099*
H9C0.99780.21580.34240.099*
C100.88150 (15)0.3852 (4)0.2835 (3)0.0685 (10)
H10A0.89840.43380.34670.103*
H10B0.84430.35650.26140.103*
H10C0.88080.45300.23650.103*
C110.92034 (13)−0.1804 (4)0.0773 (2)0.0517 (8)
C120.97975 (13)−0.1438 (4)0.1057 (2)0.0610 (9)
H12A0.9948−0.22850.09130.091*
H12B1.0025−0.12140.17510.091*
H12C0.9789−0.05850.06840.091*
C130.91972 (15)−0.3122 (4)0.1393 (3)0.0674 (10)
H13A0.8821−0.33470.11800.101*
H13B0.9403−0.28460.20800.101*
H13C0.9364−0.39900.13050.101*
C140.88828 (15)−0.2344 (5)−0.0307 (2)0.0774 (11)
H14A0.8867−0.1550−0.07240.116*
H14B0.8513−0.2623−0.05070.116*
H14C0.9068−0.3195−0.03640.116*
C150.75856 (13)0.1836 (4)−0.0695 (2)0.0594 (9)
H15A0.73730.0961−0.10660.071*
H15B0.73790.2349−0.04630.071*
C160.78926 (17)0.4270 (4)−0.0877 (3)0.0712 (11)
H16A0.79270.4902−0.13230.107*
H16B0.82530.4087−0.02960.107*
H16C0.76630.4757−0.06940.107*
C170.70858 (14)0.3107 (5)−0.2253 (3)0.0816 (12)
H17A0.68560.3598−0.20710.122*
H17B0.69220.2164−0.25630.122*
H17C0.71180.3730−0.27060.122*
C181.17964 (12)0.0384 (3)0.2871 (2)0.0412 (7)
C191.20150 (11)−0.0867 (3)0.3518 (2)0.0404 (7)
C201.17375 (11)−0.1308 (4)0.3964 (2)0.0458 (7)
H201.1880−0.21080.44060.055*
C211.12606 (12)−0.0621 (4)0.3786 (2)0.0446 (7)
C221.10584 (12)0.0591 (4)0.3143 (2)0.0441 (7)
H221.07390.10670.30230.053*
C231.13113 (12)0.1136 (3)0.2665 (2)0.0412 (7)
C241.10825 (12)0.2547 (3)0.2001 (2)0.0483 (8)
C251.05452 (14)0.3120 (4)0.1893 (3)0.0717 (10)
H25A1.02680.23480.16050.108*
H25B1.04140.39910.14750.108*
H25C1.06200.33790.25330.108*
C261.15096 (15)0.3832 (4)0.2467 (3)0.0664 (10)
H26A1.15870.40530.31140.100*
H26B1.13620.47090.20580.100*
H26C1.18460.35340.25200.100*
C271.09303 (14)0.2209 (4)0.0937 (2)0.0634 (10)
H27A1.12590.19380.09560.095*
H27B1.07680.30850.05320.095*
H27C1.06700.13950.06640.095*
C281.25469 (11)−0.1685 (3)0.3744 (2)0.0468 (8)
C291.30491 (13)−0.0619 (5)0.4262 (2)0.0657 (10)
H29A1.3382−0.11730.44670.099*
H29B1.3076−0.01790.48300.099*
H29C1.30030.01590.38110.099*
C301.24665 (13)−0.2338 (4)0.2788 (2)0.0596 (9)
H30A1.2413−0.15330.23480.089*
H30B1.2147−0.29810.24730.089*
H30C1.2789−0.29040.29470.089*
C311.26844 (15)−0.3037 (5)0.4444 (3)0.0738 (11)
H31A1.3006−0.35460.45470.111*
H31B1.2376−0.37170.41520.111*
H31C1.2757−0.26880.50670.111*
C321.09783 (13)−0.1136 (4)0.4303 (2)0.0552 (9)
H32A1.1252−0.16220.49190.066*
H32B1.0843−0.02610.44660.066*
C331.06835 (14)−0.3538 (4)0.3442 (3)0.0620 (9)
H33A1.0960−0.40560.40290.093*
H33B1.0835−0.32660.30590.093*
H33C1.0368−0.41810.30570.093*
C341.02793 (14)−0.2575 (5)0.4305 (3)0.0706 (11)
H34A0.9968−0.32330.39290.106*
H34B1.0161−0.16800.44700.106*
H34C1.0557−0.30720.49020.106*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0632 (14)0.0591 (14)0.0435 (12)0.0226 (12)0.0135 (11)−0.0036 (11)
O20.0607 (14)0.0630 (14)0.0759 (15)0.0133 (12)0.0490 (12)0.0255 (13)
N10.0567 (16)0.0494 (16)0.0451 (14)0.0094 (14)0.0225 (13)0.0080 (13)
N20.0505 (15)0.0470 (15)0.0540 (14)0.0018 (13)0.0359 (13)0.0041 (13)
C10.0402 (17)0.0464 (19)0.0407 (16)0.0025 (15)0.0185 (14)0.0058 (15)
C20.0463 (18)0.0427 (18)0.0411 (17)−0.0050 (15)0.0222 (15)0.0025 (15)
C30.0455 (18)0.0478 (19)0.0395 (16)−0.0097 (15)0.0162 (15)0.0009 (14)
C40.0409 (17)0.054 (2)0.0487 (18)−0.0009 (16)0.0227 (15)0.0098 (16)
C50.0469 (18)0.0479 (18)0.058 (2)0.0057 (15)0.0327 (17)0.0112 (16)
C60.0457 (18)0.0461 (19)0.0457 (17)−0.0019 (15)0.0276 (16)0.0043 (15)
C70.0529 (19)0.050 (2)0.0565 (19)−0.0006 (16)0.0356 (16)−0.0011 (16)
C80.080 (3)0.071 (2)0.055 (2)0.004 (2)0.0430 (19)0.0030 (19)
C90.063 (2)0.065 (2)0.076 (2)−0.0129 (19)0.0405 (19)−0.015 (2)
C100.080 (2)0.063 (2)0.072 (2)0.010 (2)0.048 (2)−0.003 (2)
C110.0546 (19)0.0449 (18)0.0439 (17)0.0024 (16)0.0193 (15)−0.0038 (15)
C120.065 (2)0.062 (2)0.0564 (19)0.0093 (19)0.0335 (17)−0.0006 (18)
C130.071 (2)0.044 (2)0.072 (2)−0.0013 (18)0.029 (2)0.0050 (18)
C140.084 (3)0.065 (2)0.056 (2)0.006 (2)0.0209 (19)−0.014 (2)
C150.0464 (19)0.065 (2)0.058 (2)0.0038 (17)0.0227 (16)0.0119 (18)
C160.101 (3)0.049 (2)0.070 (2)0.006 (2)0.050 (2)0.0000 (18)
C170.070 (2)0.093 (3)0.060 (2)0.028 (2)0.021 (2)0.019 (2)
C180.0420 (17)0.0431 (17)0.0387 (15)−0.0036 (14)0.0220 (14)−0.0010 (14)
C190.0360 (16)0.0428 (18)0.0347 (15)−0.0041 (13)0.0144 (13)−0.0039 (13)
C200.0453 (18)0.0444 (17)0.0399 (16)−0.0064 (15)0.0182 (14)0.0009 (14)
C210.0435 (18)0.0500 (19)0.0414 (16)−0.0099 (16)0.0238 (14)−0.0088 (15)
C220.0419 (17)0.0453 (18)0.0465 (16)−0.0054 (15)0.0248 (15)−0.0100 (15)
C230.0392 (16)0.0386 (17)0.0423 (16)−0.0044 (14)0.0199 (14)−0.0079 (13)
C240.0528 (18)0.0432 (18)0.0509 (17)0.0055 (16)0.0296 (15)−0.0011 (15)
C250.075 (2)0.059 (2)0.089 (3)0.023 (2)0.050 (2)0.012 (2)
C260.080 (2)0.0441 (19)0.076 (2)−0.0067 (19)0.043 (2)−0.0042 (19)
C270.067 (2)0.067 (2)0.0489 (19)0.016 (2)0.0262 (17)0.0066 (18)
C280.0370 (16)0.0526 (19)0.0404 (17)0.0061 (15)0.0144 (14)0.0058 (15)
C290.0404 (18)0.081 (3)0.062 (2)−0.0071 (18)0.0188 (16)−0.013 (2)
C300.0496 (18)0.061 (2)0.059 (2)0.0088 (18)0.0236 (17)−0.0061 (18)
C310.063 (2)0.074 (3)0.076 (2)0.021 (2)0.032 (2)0.028 (2)
C320.062 (2)0.061 (2)0.0483 (18)−0.0064 (18)0.0341 (17)−0.0044 (17)
C330.052 (2)0.049 (2)0.081 (2)0.0040 (17)0.0329 (18)0.0002 (19)
C340.073 (2)0.086 (3)0.072 (2)0.003 (2)0.052 (2)0.020 (2)

Geometric parameters (Å, °)

O1—C11.377 (3)C16—H16B0.9600
O1—H10.8495C16—H16C0.9600
O2—C181.376 (3)C17—H17A0.9600
O2—H20.8557C17—H17B0.9600
N1—C161.461 (4)C17—H17C0.9600
N1—C171.470 (4)C18—C231.413 (4)
N1—C151.474 (4)C18—C191.419 (4)
N2—C331.465 (4)C19—C201.389 (4)
N2—C341.466 (4)C19—C281.547 (4)
N2—C321.477 (4)C20—C211.381 (4)
C1—C61.411 (4)C20—H200.9300
C1—C21.415 (4)C21—C221.387 (4)
C2—C31.398 (4)C21—C321.515 (4)
C2—C111.552 (5)C22—C231.403 (4)
C3—C41.387 (4)C22—H220.9300
C3—H30.9300C23—C241.547 (4)
C4—C51.390 (4)C24—C261.542 (4)
C4—C151.514 (4)C24—C251.543 (4)
C5—C61.395 (4)C24—C271.551 (4)
C5—H50.9300C25—H25A0.9600
C6—C71.552 (4)C25—H25B0.9600
C7—C91.536 (4)C25—H25C0.9600
C7—C81.541 (4)C26—H26A0.9600
C7—C101.543 (5)C26—H26B0.9600
C8—H8A0.9600C26—H26C0.9600
C8—H8B0.9600C27—H27A0.9600
C8—H8C0.9600C27—H27B0.9600
C9—H9A0.9600C27—H27C0.9600
C9—H9B0.9600C28—C291.540 (4)
C9—H9C0.9600C28—C301.543 (4)
C10—H10A0.9600C28—C311.547 (5)
C10—H10B0.9600C29—H29A0.9600
C10—H10C0.9600C29—H29B0.9600
C11—C141.537 (4)C29—H29C0.9600
C11—C121.542 (4)C30—H30A0.9600
C11—C131.549 (5)C30—H30B0.9600
C12—H12A0.9600C30—H30C0.9600
C12—H12B0.9600C31—H31A0.9600
C12—H12C0.9600C31—H31B0.9600
C13—H13A0.9600C31—H31C0.9600
C13—H13B0.9600C32—H32A0.9700
C13—H13C0.9600C32—H32B0.9700
C14—H14A0.9600C33—H33A0.9600
C14—H14B0.9600C33—H33B0.9600
C14—H14C0.9600C33—H33C0.9600
C15—H15A0.9700C34—H34A0.9600
C15—H15B0.9700C34—H34B0.9600
C16—H16A0.9600C34—H34C0.9600
C1—O1—H1114.8H17A—C17—H17B109.5
C18—O2—H2119.8N1—C17—H17C109.5
C16—N1—C17110.1 (3)H17A—C17—H17C109.5
C16—N1—C15111.0 (2)H17B—C17—H17C109.5
C17—N1—C15108.7 (3)O2—C18—C23123.8 (2)
C33—N2—C34110.2 (3)O2—C18—C19114.1 (2)
C33—N2—C32112.0 (2)C23—C18—C19122.1 (3)
C34—N2—C32108.3 (2)C20—C19—C18117.0 (3)
O1—C1—C6114.4 (2)C20—C19—C28121.1 (3)
O1—C1—C2123.2 (3)C18—C19—C28121.9 (3)
C6—C1—C2122.4 (3)C21—C20—C19123.4 (3)
C3—C2—C1116.4 (3)C21—C20—H20118.3
C3—C2—C11120.5 (3)C19—C20—H20118.3
C1—C2—C11123.1 (3)C20—C21—C22117.8 (3)
C4—C3—C2123.5 (3)C20—C21—C32121.2 (3)
C4—C3—H3118.3C22—C21—C32121.0 (3)
C2—C3—H3118.3C21—C22—C23123.3 (3)
C3—C4—C5117.6 (3)C21—C22—H22118.4
C3—C4—C15120.6 (3)C23—C22—H22118.4
C5—C4—C15121.8 (3)C22—C23—C18116.5 (3)
C4—C5—C6123.0 (3)C22—C23—C24120.6 (3)
C4—C5—H5118.5C18—C23—C24122.8 (3)
C6—C5—H5118.5C26—C24—C25106.9 (3)
C5—C6—C1117.0 (3)C26—C24—C23109.9 (2)
C5—C6—C7121.4 (3)C25—C24—C23111.7 (3)
C1—C6—C7121.6 (3)C26—C24—C27110.7 (3)
C9—C7—C8110.5 (3)C25—C24—C27106.1 (3)
C9—C7—C10105.9 (3)C23—C24—C27111.3 (3)
C8—C7—C10107.7 (3)C24—C25—H25A109.5
C9—C7—C6111.4 (2)C24—C25—H25B109.5
C8—C7—C6109.7 (2)H25A—C25—H25B109.5
C10—C7—C6111.5 (3)C24—C25—H25C109.5
C7—C8—H8A109.5H25A—C25—H25C109.5
C7—C8—H8B109.5H25B—C25—H25C109.5
H8A—C8—H8B109.5C24—C26—H26A109.5
C7—C8—H8C109.5C24—C26—H26B109.5
H8A—C8—H8C109.5H26A—C26—H26B109.5
H8B—C8—H8C109.5C24—C26—H26C109.5
C7—C9—H9A109.5H26A—C26—H26C109.5
C7—C9—H9B109.5H26B—C26—H26C109.5
H9A—C9—H9B109.5C24—C27—H27A109.5
C7—C9—H9C109.5C24—C27—H27B109.5
H9A—C9—H9C109.5H27A—C27—H27B109.5
H9B—C9—H9C109.5C24—C27—H27C109.5
C7—C10—H10A109.5H27A—C27—H27C109.5
C7—C10—H10B109.5H27B—C27—H27C109.5
H10A—C10—H10B109.5C29—C28—C30111.1 (3)
C7—C10—H10C109.5C29—C28—C19110.6 (3)
H10A—C10—H10C109.5C30—C28—C19110.5 (2)
H10B—C10—H10C109.5C29—C28—C31107.1 (2)
C14—C11—C12106.7 (3)C30—C28—C31105.9 (3)
C14—C11—C13106.5 (3)C19—C28—C31111.5 (3)
C12—C11—C13111.6 (3)C28—C29—H29A109.5
C14—C11—C2111.7 (3)C28—C29—H29B109.5
C12—C11—C2111.5 (3)H29A—C29—H29B109.5
C13—C11—C2108.8 (2)C28—C29—H29C109.5
C11—C12—H12A109.5H29A—C29—H29C109.5
C11—C12—H12B109.5H29B—C29—H29C109.5
H12A—C12—H12B109.5C28—C30—H30A109.5
C11—C12—H12C109.5C28—C30—H30B109.5
H12A—C12—H12C109.5H30A—C30—H30B109.5
H12B—C12—H12C109.5C28—C30—H30C109.5
C11—C13—H13A109.5H30A—C30—H30C109.5
C11—C13—H13B109.5H30B—C30—H30C109.5
H13A—C13—H13B109.5C28—C31—H31A109.5
C11—C13—H13C109.5C28—C31—H31B109.5
H13A—C13—H13C109.5H31A—C31—H31B109.5
H13B—C13—H13C109.5C28—C31—H31C109.5
C11—C14—H14A109.5H31A—C31—H31C109.5
C11—C14—H14B109.5H31B—C31—H31C109.5
H14A—C14—H14B109.5N2—C32—C21114.4 (2)
C11—C14—H14C109.5N2—C32—H32A108.7
H14A—C14—H14C109.5C21—C32—H32A108.7
H14B—C14—H14C109.5N2—C32—H32B108.7
N1—C15—C4113.8 (3)C21—C32—H32B108.7
N1—C15—H15A108.8H32A—C32—H32B107.6
C4—C15—H15A108.8N2—C33—H33A109.5
N1—C15—H15B108.8N2—C33—H33B109.5
C4—C15—H15B108.8H33A—C33—H33B109.5
H15A—C15—H15B107.7N2—C33—H33C109.5
N1—C16—H16A109.5H33A—C33—H33C109.5
N1—C16—H16B109.5H33B—C33—H33C109.5
H16A—C16—H16B109.5N2—C34—H34A109.5
N1—C16—H16C109.5N2—C34—H34B109.5
H16A—C16—H16C109.5H34A—C34—H34B109.5
H16B—C16—H16C109.5N2—C34—H34C109.5
N1—C17—H17A109.5H34A—C34—H34C109.5
N1—C17—H17B109.5H34B—C34—H34C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N20.852.202.836 (3)132
O2—H2···N1i0.862.262.933 (3)135

Symmetry codes: (i) −x+2, y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2296).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Ciba-Geigy AG (1978). Swiss Patent CH597 297.
  • Coffield, T. H. (1965). US Patent 3 208 859.
  • Coffield, T. H. & Mich, F. (1965). US Patent 3 225 099.
  • Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent 3 950 382.
  • Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent 3 856 846.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rieker, A., Kaufmann, H., Brück, D., Workman, R. & Müller, E. (1968). Tetrahedron, 24, 103–115.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. Part A Polym. Chem.35, 2431–2439.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography