PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o211.
Published online 2007 December 6. doi:  10.1107/S1600536807064197
PMCID: PMC2915272

2-(2,3,5,6-Tetra­fluoro-4-iodo­anilino)­ethanol

Abstract

The reaction of 2-amino­ethanol and iodo­penta­fluoro­benzene in the presence of K2CO3 gave the title compound, C8H6F4INO, in high yield. The structure is characterized by double layers of mol­ecules linked by O—H(...)O and N—H(...)O hydrogen bonds, and linear C—I(...)F [I(...)F = 3.049 (2) Å] and bent C—I(...)I [I(...)I = 3.9388 (7) Å] inter­actions between pairs of nearly parallel iodo­tetra­fluoro­phenyl groups. No O(...)I or N(...)I halogen bonding is found.

Related literature

For related literature, see: Metrangolo & Resnati (2001 [triangle]); Metrangolo et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o211-scheme1.jpg

Experimental

Crystal data

  • C8H6F4INO
  • M r = 335.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o211-efi1.jpg
  • a = 13.327 (2) Å
  • b = 17.663 (3) Å
  • c = 8.3044 (14) Å
  • β = 96.94 (2)°
  • V = 1940.5 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.33 mm−1
  • T = 158 (2) K
  • 0.24 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.691, T max = 1.000 (expected range = 0.529–0.766)
  • 8054 measured reflections
  • 2924 independent reflections
  • 2422 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.092
  • S = 1.04
  • 2924 reflections
  • 162 parameters
  • 8 restraints
  • All H-atom parameters refined
  • Δρmax = 1.65 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064197/cf2167sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064197/cf2167Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Supramolecular architectures assembled by halogen bonding (XB) are our long-standing interest (Metrangolo & Resnati, 2001; Metrangolo et al., 2005, 2007). As preliminary work, we need to design and to synthesize molecules showing functional and geometric properties adequate to give the supramolecular structures we wish to obtain. In the present study, we report the structure of 2-(2,3,5,6-tetrafluoro-4-iodo-phenylamino)ethanol, an intermediate in the synthesis of more complex molecules to be used in XB supramolecular engineering and in particular to cover gold surfaces with iodotetrafluorobenzene pendants. The molecular structure is shown in Figure 1. Containing alcohol and amino H atoms, the main interactions in this structure are O—H···O and N—H···O hydrogen bonds (HB) rather then O···I or N···I XB. In fact, we find the short distances O1···O1(-x,y,1/2 - z), O1···O1(-x,-y,1 - z) and N1···O1(x,-y,1/2 + z) of 2.715 (5), 2.781 (5), 3.046 (4) Å, respectively. These HBs generate one-dimensional sandwich ribbons; the distance between the centroids of a benzene ring and the mean plane through the nearest benzene ring in the sandwich is 3.393 Å. As shown in Figure 2 and 3, parallel one-dimensional ribbons are linked together by I1···I1(-x,1 - y,2 - z) and I1···F3(x,1 - y,1/2 + x) interactions, with length of 3.9388 (7) and 3.049 (2) Å, respectively, to form a two-dimensional sandwich layer. These are linked together only by residual forces; no distance below the sum of van der Waals radii is found between atoms in different sandwiches, as shown by the distance between the benzene centroid and the plane of the nearest benzene ring in a second two-dimensional layer, 0.074 Å larger than the intra-sandwich one (see Figure 4).

Experimental

500 mg (8.2 mmol) of ethanolamine, 1.64 ml (12.3 mmol) of iodopentafluorobenzene and 1.24 g (9.03 mmol) of K2CO3 were stirred in 15 ml of refluxing THF. After 5 h, water was added and the aqueous phase was extracted three times with dichloromethane. The combined organic phases were washed with saturated aqueous Na2S2O3 solution and dried over Na2SO4. The residue was chromatographied on silica gel (240–400 mesh, eluent dichloromethane) to give the product in 86% yield. 1H NMR (500 MHz, CDCl3): δ 3.84 (2H, t, J = 5.2 Hz, CH2), 3.56 (2H, tt, J = 1.4 Hz, J = 5.2 Hz, CH2), 3.06 (2H, br s, OH and NH); 19 F NMR (470 MHz, CDCl3): δ -157.8 (2 F, m, CF—C), -124.3 (2 F, m, CF—CI)

Refinement

Exchanging the atomic assignments of N1 and O1 worsens the results of the least-squares refinement, thus confirming that the tetrafluoroiodobenzene is bound to the amine group of ethanolamine. The H atoms were located in a difference map. For H of the hydroxyl group two possible positions were found. Both the positions (corresponding to H1O and H2O) are incompatible with a symmetry-equivalent position. In fact, the H1O···H1O(-x, y, 1/2 - z) distance is only 1.08 Å, and the H2O···H2O(-x, -y, 1 - z) distance is 1.24 Å. However, the distances H1O···H2O(-x, y, 1/2 - z) and H1O···H2O(-x, -y, 1 - z) are compatible with hydrogen bonding, being 2.17 and 2.32 Å, respectively. Any rotation of C—O—H around the C—O bond does not remedy the situation. The the hydroxyl group is thus disordered. H atoms were refined with the following restraints: all the C—H distances are approximately equal, O—H is 0.82 (1) Å, and N—H is freely refined.

Figures

Fig. 1.
Molecular structure with the numbering scheme and ADPs at the 50% probability level.
Fig. 2.
A two-dimensional sandwich (see text) projected along the a* axis, in Mercury ball and stick style. H atoms omitted.
Fig. 3.
The two-dimensional sandwich projected along the c axis.
Fig. 4.
The complete packing viewed along the c axis with the distances between the centroid of the benzene ring and the planes of the two nearest benzene rings.

Crystal data

C8H6F4INOF000 = 1264
Mr = 335.04Dx = 2.294 Mg m3
Monoclinic, C2/cMelting point = 343–348 K
Hall symbol: -C 2ycMo Kα radiation λ = 0.71073 Å
a = 13.327 (2) ÅCell parameters from 2964 reflections
b = 17.663 (3) Åθ = 3.0–29.1º
c = 8.3044 (14) ŵ = 3.33 mm1
β = 96.94 (2)ºT = 158 (2) K
V = 1940.5 (6) Å3Irregular table, colourless
Z = 80.24 × 0.16 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer2924 independent reflections
Radiation source: fine-focus sealed tube2422 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 158(2) Kθmax = 31.3º
ω and [var phi] scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −18→18
Tmin = 0.691, Tmax = 1.000k = −16→25
8054 measured reflectionsl = −11→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.092  w = 1/[σ2(Fo2) + (0.0481P)2 + 2.2775P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2924 reflectionsΔρmax = 1.65 e Å3
162 parametersΔρmin = −0.47 e Å3
8 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Data collection using an OXFORD low temperature device. Below 158 K the structure possibly shows a phase transition.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
I10.116120 (18)0.431723 (13)1.05305 (3)0.03962 (10)
F10.11489 (13)0.12833 (11)1.03239 (18)0.0310 (4)
F20.10979 (15)0.26089 (11)1.1821 (2)0.0341 (4)
F30.13483 (15)0.38552 (11)0.6853 (2)0.0375 (4)
F40.13603 (14)0.25397 (11)0.53509 (19)0.0320 (4)
N10.12288 (19)0.11508 (15)0.7067 (3)0.0256 (5)
H1N0.120 (3)0.080 (2)0.779 (5)0.032 (10)*
O10.06410 (19)0.02423 (13)0.3901 (2)0.0322 (5)
H1O0.026 (5)0.027 (5)0.306 (6)0.048*0.50
H2O0.022 (5)0.020 (5)0.454 (8)0.048*0.50
C10.12620 (19)0.18530 (16)0.7785 (3)0.0211 (5)
C20.1188 (2)0.19221 (15)0.9451 (3)0.0220 (5)
C30.11614 (19)0.26044 (18)1.0212 (3)0.0239 (5)
C40.1225 (2)0.32801 (16)0.9396 (4)0.0257 (5)
C50.1307 (2)0.32223 (17)0.7744 (4)0.0266 (6)
C60.13237 (19)0.25369 (15)0.6968 (3)0.0235 (5)
C70.1830 (2)0.0964 (2)0.5749 (3)0.0300 (6)
H7A0.216 (3)0.0485 (14)0.602 (4)0.031 (9)*
H7B0.237 (2)0.1319 (17)0.573 (4)0.032 (9)*
C80.1226 (3)0.0915 (2)0.4085 (3)0.0303 (6)
H8A0.079 (3)0.136 (2)0.388 (6)0.072 (15)*
H8B0.161 (2)0.090 (2)0.319 (3)0.029 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.04639 (16)0.02605 (13)0.04478 (15)0.00436 (8)−0.00122 (10)−0.00885 (8)
F10.0507 (11)0.0251 (9)0.0177 (7)−0.0040 (7)0.0061 (7)0.0048 (6)
F20.0505 (10)0.0345 (10)0.0177 (7)0.0006 (8)0.0052 (7)−0.0053 (7)
F30.0486 (11)0.0235 (9)0.0403 (10)−0.0035 (8)0.0052 (8)0.0108 (8)
F40.0446 (10)0.0336 (10)0.0190 (8)−0.0037 (8)0.0089 (7)0.0048 (7)
N10.0371 (13)0.0243 (12)0.0161 (10)−0.0009 (10)0.0068 (9)0.0017 (9)
O10.0516 (14)0.0244 (10)0.0190 (9)0.0051 (10)−0.0024 (9)−0.0019 (8)
C10.0215 (11)0.0249 (13)0.0171 (11)0.0001 (10)0.0032 (9)0.0004 (9)
C20.0263 (12)0.0208 (12)0.0192 (11)−0.0011 (10)0.0040 (9)0.0039 (9)
C30.0248 (13)0.0273 (14)0.0195 (12)−0.0018 (10)0.0021 (10)−0.0017 (10)
C40.0229 (12)0.0215 (13)0.0325 (14)0.0001 (10)0.0021 (10)−0.0011 (11)
C50.0243 (12)0.0253 (13)0.0297 (14)−0.0023 (11)0.0020 (10)0.0084 (11)
C60.0240 (12)0.0275 (14)0.0194 (12)−0.0035 (11)0.0045 (10)0.0030 (10)
C70.0345 (15)0.0359 (16)0.0204 (12)0.0057 (13)0.0061 (11)−0.0026 (11)
C80.0408 (16)0.0331 (15)0.0172 (12)0.0021 (13)0.0049 (11)0.0016 (11)

Geometric parameters (Å, °)

I1—C42.067 (3)C1—C61.393 (4)
F1—C21.345 (3)C1—C21.404 (4)
F2—C31.349 (3)C2—C31.363 (4)
F3—C51.346 (3)C3—C41.380 (4)
F4—C61.350 (3)C4—C51.392 (4)
N1—C11.375 (4)C5—C61.373 (4)
N1—C71.470 (4)C7—C81.516 (4)
N1—H1N0.87 (4)C7—H7A0.97 (2)
O1—C81.419 (4)C7—H7B0.96 (2)
O1—H1O0.818 (10)C8—H8A0.97 (2)
O1—H2O0.818 (10)C8—H8B0.96 (2)
C1—N1—C7122.3 (2)F3—C5—C6118.0 (3)
C1—N1—H1N110 (3)F3—C5—C4119.6 (3)
C7—N1—H1N115 (3)C6—C5—C4122.3 (3)
C8—O1—H1O108 (6)F4—C6—C5117.9 (2)
C8—O1—H2O115 (6)F4—C6—C1120.0 (2)
H1O—O1—H2O99 (8)C5—C6—C1122.0 (2)
N1—C1—C6124.9 (2)N1—C7—C8114.5 (3)
N1—C1—C2120.3 (2)N1—C7—H7A107 (2)
C6—C1—C2114.8 (2)C8—C7—H7A110 (2)
F1—C2—C3119.1 (2)N1—C7—H7B110 (2)
F1—C2—C1118.0 (2)C8—C7—H7B110 (2)
C3—C2—C1122.9 (3)H7A—C7—H7B105 (3)
F2—C3—C2118.2 (3)O1—C8—C7111.7 (3)
F2—C3—C4119.8 (3)O1—C8—H8A110 (3)
C2—C3—C4122.0 (3)C7—C8—H8A110 (3)
C3—C4—C5115.9 (3)O1—C8—H8B104 (2)
C3—C4—I1122.3 (2)C7—C8—H8B116 (2)
C5—C4—I1121.8 (2)H8A—C8—H8B105 (4)
C7—N1—C1—C638.5 (4)C3—C4—C5—F3178.5 (2)
C7—N1—C1—C2−144.3 (3)I1—C4—C5—F30.1 (4)
N1—C1—C2—F14.1 (4)C3—C4—C5—C60.0 (4)
C6—C1—C2—F1−178.5 (2)I1—C4—C5—C6−178.3 (2)
N1—C1—C2—C3−176.3 (3)F3—C5—C6—F4−1.3 (4)
C6—C1—C2—C31.1 (4)C4—C5—C6—F4177.1 (2)
F1—C2—C3—F20.1 (4)F3—C5—C6—C1−178.6 (2)
C1—C2—C3—F2−179.5 (2)C4—C5—C6—C1−0.1 (4)
F1—C2—C3—C4178.3 (2)N1—C1—C6—F4−0.3 (4)
C1—C2—C3—C4−1.3 (4)C2—C1—C6—F4−177.6 (2)
F2—C3—C4—C5178.8 (2)N1—C1—C6—C5176.9 (3)
C2—C3—C4—C50.7 (4)C2—C1—C6—C5−0.4 (4)
F2—C3—C4—I1−2.8 (4)C1—N1—C7—C8−106.0 (3)
C2—C3—C4—I1179.0 (2)N1—C7—C8—O1−74.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (2)2.23 (3)3.046 (3)157 (3)
O1—H1O···O1ii0.82 (5)1.90 (7)2.715 (4)175 (8)
O1—H2O···O1iii0.82 (5)1.99 (5)2.781 (4)162 (8)

Symmetry codes: (i) x, −y, z−1/2; (ii) −x, y, −z+1/2; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2167).

References

  • Bruker (1999). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res.38, 386–395. [PubMed]
  • Metrangolo, P. & Resnati, G. (2001). Chem. Eur. J.7, 2511–2519. [PubMed]
  • Metrangolo, P., Resnati, G., Pilati, T., Liantonio, R. & Meyer, F. (2007). J. Polym. Sci. Part. A, 45, 1–15.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography