PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o209.
Published online 2007 December 6. doi:  10.1107/S1600536807064914
PMCID: PMC2915270

2,2-Dichloro-N-(3,5-dimethyl­phen­yl)­acetamide

Abstract

The structure of the title compound, C10H11Cl2NO, resembles those of 2,2-dichloro-N-phenyl­acetamide, 2,2-dichloro-N-(2-methyl­phen­yl)acetamide, 2,2-dichloro-N-(3-methyl­phen­yl)­acetamide, 2,2-dichloro-N-(4-methyl­phen­yl)acetamide, N-(3,5-dimethyl­phen­yl)acetamide and other acetanilides, with similar bond parameters. The mol­ecules in the title compound are linked into infinite chains through N—H(...)O and C—H(...)O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2001 [triangle], 2006 [triangle], 2007 [triangle]); Shilpa & Gowda (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o209-scheme1.jpg

Experimental

Crystal data

  • C10H11Cl2NO
  • M r = 232.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o209-efi3.jpg
  • a = 11.412 (4) Å
  • b = 10.570 (4) Å
  • c = 9.163 (3) Å
  • β = 110.99 (2)°
  • V = 1031.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 297 (2) K
  • 0.80 × 0.26 × 0.13 mm

Data collection

  • Stoe STADI-4 four-circle diffractometer
  • Absorption correction: ψ-sacn (North et al., 1968 [triangle]) T min = 0.873, T max = 0.927
  • 1825 measured reflections
  • 1825 independent reflections
  • 1445 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.179
  • S = 1.07
  • 1825 reflections
  • 133 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: STADI4 (Stoe & Cie, 1987 [triangle]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064914/dn2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064914/dn2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2,2-dichloro-N- (3,5-dimethylphenyl)-acetamide (35DMPDCA) has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2001, 2006, 2007). The structure of 35DMPDCA (Fig. 1) resembles those of 2,2-dichloro-N-(phenyl)acetamide (PDCA)(Gowda et al., 2001), 2,2-dichloro-N-(2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), 2,2-dichloro-N-(3-methylphenyl)-acetamide (3MPDCA) (Gowda et al., 2006), 2,2-dichloro-N-(4-methylphenyl)-acetamide (4MPDCA)(Gowda et al., 2001) and N-(3,5-dimethylphenyl)-acetamide (35DMPA)(Gowda et al., 2007). But the 35DMPDCA has a single molecule in its asymmetric unit, in contrast to two molecules observed in the asymmetric unit of 35DMPA. The bond parameters in 35DMPDCA are similar to those in PDCA, 2MPDCA, 3MPDCA, 4MPDCA, 35DMPA and other acetanilides (Gowda et al., 2001, 2006; 2007). The molecules in 35DMPDcA are linked into zigzag chains through N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.98 Å (CHCl2) with Uiso(H) = 1.2 Ueq(CH) and Uiso(H) = 1.4 Ueq(CH3).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of the chain through N—H···O hydrogen bondings. H atoms not involved in H bonds have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x, -y + 1/2, ...

Crystal data

C10H11Cl2NOF000 = 480
Mr = 232.10Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 44 reflections
a = 11.412 (4) Åθ = 17.6–19.7º
b = 10.570 (4) ŵ = 0.59 mm1
c = 9.163 (3) ÅT = 297 (2) K
β = 110.99 (2)ºPrism, light yellow
V = 1031.9 (6) Å30.80 × 0.26 × 0.13 mm
Z = 4

Data collection

Stoe STADI-4 four-circle diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 1.9º
T = 297(2) Kh = −13→12
Profile fitted scans 2θ/ω=1/1k = 0→12
Absorption correction: numerical(North et al., 1968)l = 0→10
Tmin = 0.873, Tmax = 0.9273 standard reflections
1825 measured reflections every 120 min
1825 independent reflections intensity decay: 1%
1445 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179  w = 1/[σ2(Fo2) + (0.0889P)2 + 0.8161P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.015
1825 reflectionsΔρmax = 0.62 e Å3
133 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1−0.00025 (11)0.11758 (11)0.14291 (16)0.0946 (5)
Cl20.03634 (11)0.35402 (11)0.07162 (15)0.0921 (5)
C30.0997 (3)0.2384 (3)0.2002 (4)0.0532 (8)
H30.10840.26530.30590.064*
C40.2273 (3)0.2054 (3)0.1930 (3)0.0471 (7)
O50.2424 (2)0.1976 (3)0.0688 (2)0.0668 (7)
N60.3146 (2)0.1846 (2)0.3333 (3)0.0460 (6)
H6N0.300 (3)0.199 (3)0.408 (4)0.055*
C70.4409 (3)0.1498 (3)0.3696 (3)0.0442 (7)
C80.4852 (3)0.1039 (3)0.2593 (4)0.0522 (8)
H80.43180.09550.15580.063*
C90.6106 (3)0.0702 (3)0.3040 (4)0.0580 (8)
C100.6875 (3)0.0818 (3)0.4575 (4)0.0602 (9)
H100.77130.05830.48660.072*
C110.6444 (3)0.1270 (3)0.5694 (4)0.0574 (8)
C120.5203 (3)0.1600 (3)0.5236 (4)0.0511 (8)
H120.48890.18990.59770.061*
C130.6583 (4)0.0221 (5)0.1825 (5)0.0855 (13)
H13A0.63460.07950.09560.120*
H13B0.6229−0.05980.14760.120*
H13C0.74810.01550.22620.120*
C140.7311 (4)0.1379 (4)0.7388 (5)0.0799 (12)
H14A0.81490.15550.74340.112*0.46 (5)
H14B0.73040.05980.79200.112*0.46 (5)
H14C0.70290.20530.78830.112*0.46 (5)
H14D0.68390.12500.80570.112*0.54 (5)
H14E0.76840.22060.75710.112*0.54 (5)
H14F0.79590.07510.76090.112*0.54 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0748 (8)0.0835 (8)0.1257 (11)−0.0243 (5)0.0362 (7)−0.0154 (6)
Cl20.0778 (8)0.0821 (8)0.1134 (9)0.0310 (6)0.0306 (6)0.0280 (6)
C30.0472 (16)0.0593 (19)0.0507 (16)0.0001 (14)0.0146 (13)−0.0023 (14)
C40.0502 (17)0.0486 (16)0.0425 (15)0.0020 (13)0.0165 (13)0.0035 (12)
O50.0634 (15)0.0949 (19)0.0436 (12)0.0195 (13)0.0211 (10)0.0148 (12)
N60.0494 (14)0.0508 (14)0.0388 (13)0.0056 (11)0.0171 (11)0.0011 (11)
C70.0463 (16)0.0370 (14)0.0482 (16)0.0021 (11)0.0156 (13)0.0052 (11)
C80.0566 (19)0.0501 (16)0.0490 (16)0.0047 (14)0.0176 (14)0.0033 (13)
C90.0567 (19)0.0496 (17)0.070 (2)0.0057 (14)0.0258 (17)0.0038 (15)
C100.0480 (18)0.0505 (17)0.076 (2)0.0062 (14)0.0153 (16)0.0040 (16)
C110.0530 (19)0.0431 (16)0.065 (2)−0.0012 (13)0.0074 (16)0.0028 (14)
C120.0547 (19)0.0457 (16)0.0479 (16)0.0013 (14)0.0123 (14)−0.0001 (13)
C130.080 (3)0.096 (3)0.089 (3)0.027 (2)0.041 (2)−0.001 (2)
C140.065 (2)0.072 (2)0.074 (2)0.0028 (19)−0.0092 (19)−0.0078 (19)

Geometric parameters (Å, °)

Cl1—C31.667 (3)C10—C111.372 (5)
Cl2—C31.671 (3)C10—H100.9300
C3—C41.522 (4)C11—C121.371 (5)
C3—H30.9800C11—C141.518 (5)
C4—O51.213 (4)C12—H120.9300
C4—N61.333 (4)C13—H13A0.9600
N6—C71.407 (4)C13—H13B0.9600
N6—H6N0.78 (4)C13—H13C0.9600
C7—C81.370 (4)C14—H14A0.9600
C7—C121.381 (4)C14—H14B0.9600
C8—C91.387 (5)C14—H14C0.9600
C8—H80.9300C14—H14D0.9600
C9—C101.370 (5)C14—H14E0.9600
C9—C131.493 (5)C14—H14F0.9600
C4—C3—Cl1111.6 (2)C7—C12—H12119.3
C4—C3—Cl2108.4 (2)C9—C13—H13A109.5
Cl1—C3—Cl2105.31 (18)C9—C13—H13B109.5
C4—C3—H3110.5H13A—C13—H13B109.5
Cl1—C3—H3110.5C9—C13—H13C109.5
Cl2—C3—H3110.5H13A—C13—H13C109.5
O5—C4—N6125.8 (3)H13B—C13—H13C109.5
O5—C4—C3121.0 (3)C11—C14—H14A109.5
N6—C4—C3113.1 (3)C11—C14—H14B109.5
C4—N6—C7128.3 (3)H14A—C14—H14B109.5
C4—N6—H6N120 (3)C11—C14—H14C109.5
C7—N6—H6N112 (3)H14A—C14—H14C109.5
C8—C7—C12120.1 (3)H14B—C14—H14C109.5
C8—C7—N6122.4 (3)C11—C14—H14D109.5
C12—C7—N6117.6 (3)H14A—C14—H14D141.1
C7—C8—C9119.2 (3)H14B—C14—H14D56.3
C7—C8—H8120.4H14C—C14—H14D56.3
C9—C8—H8120.4C11—C14—H14E109.5
C10—C9—C8119.6 (3)H14A—C14—H14E56.3
C10—C9—C13121.7 (3)H14B—C14—H14E141.1
C8—C9—C13118.7 (3)H14C—C14—H14E56.3
C9—C10—C11121.9 (3)H14D—C14—H14E109.5
C9—C10—H10119.0C11—C14—H14F109.5
C11—C10—H10119.0H14A—C14—H14F56.3
C12—C11—C10117.9 (3)H14B—C14—H14F56.3
C12—C11—C14121.2 (4)H14C—C14—H14F141.1
C10—C11—C14121.0 (3)H14D—C14—H14F109.5
C11—C12—C7121.4 (3)H14E—C14—H14F109.5
C11—C12—H12119.3
Cl1—C3—C4—O573.5 (4)C7—C8—C9—C100.8 (5)
Cl2—C3—C4—O5−42.1 (4)C7—C8—C9—C13−179.2 (3)
Cl1—C3—C4—N6−105.2 (3)C8—C9—C10—C11−0.6 (5)
Cl2—C3—C4—N6139.3 (2)C13—C9—C10—C11179.4 (4)
O5—C4—N6—C70.0 (5)C9—C10—C11—C120.5 (5)
C3—C4—N6—C7178.5 (3)C9—C10—C11—C14179.5 (3)
C4—N6—C7—C8−15.4 (5)C10—C11—C12—C7−0.8 (5)
C4—N6—C7—C12166.3 (3)C14—C11—C12—C7−179.8 (3)
C12—C7—C8—C9−1.1 (5)C8—C7—C12—C111.1 (5)
N6—C7—C8—C9−179.3 (3)N6—C7—C12—C11179.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H6N···O5i0.78 (4)2.12 (4)2.857 (4)159 (4)
C3—H3···O5i0.982.383.252 (4)148

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2290).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.
  • Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394.
  • Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). STADI4 and REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography