PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o208.
Published online 2007 December 6. doi:  10.1107/S1600536807064847
PMCID: PMC2915269

2-Chloro-N-(3-methyl­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the structure of the title compound, C9H10ClNO, is syn to the meta-methyl group, in contrast to the anti conformation observed with respect to the meta-nitro group in 2-chloro-N-(3-nitro­phen­yl)­acetamide. The asymmetric unit of the title compound contains two mol­ecules. The geometric parameters of the title compound are similar to those of 2-chloro-N-(4-methyl­phen­yl)­acetamide, 2-chloro-N-(3-nitro­phen­yl)acetamide and other acetanilides. Dual inter­molecular N—H(...)O hydrogen bonds link the mol­ecules in the direction of the a axis.

Related literature

For related literature, see: Gowda et al. (2006 [triangle], 2007a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o208-scheme1.jpg

Experimental

Crystal data

  • C9H10ClNO
  • M r = 183.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o208-efi1.jpg
  • a = 8.326 (3) Å
  • b = 9.742 (3) Å
  • c = 11.491 (4) Å
  • α = 91.21 (1)°
  • β = 97.97 (1)°
  • γ = 98.08 (1)°
  • V = 913.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 299 (2) K
  • 0.75 × 0.45 × 0.17 mm

Data collection

  • Stoe STADI-4 four-circle diffractometer
  • Absorption correction: ψ-scan (North et al., 1968 [triangle]) T min = 0.704, T max = 0.918
  • 3214 measured reflections
  • 3214 independent reflections
  • 2651 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 180 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.136
  • S = 1.05
  • 3214 reflections
  • 221 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: STADI4 (Stoe & Cie, 1987 [triangle]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064847/dn2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064847/dn2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(3-methylphenyl)- acetamide (3MPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, 2007b, 2007c). The conformation of the N—H bond in the structure of 3MPCA is syn to the meta methyl group, in contrast to the anti conformation observed with respect to the meta nitro group in the 2-chloro-N-(3-nitrophenyl)acetamide (3NPCA)(Gowda et al., 2007b). The asymmetric unit of 3MPCA crystal contains two molecules. The geometric parameters of 3MPCA are similar to those of 3NPCA (Gowda et al., 2007b), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007a), 2-chloro-N- (2-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides. The molecules in 3MPcA are linked into infinite diagonal chains through dual intermolecular N1—H1···O2 and N2—H2—O1 hydrogen bonding in the bc plane (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2006). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda et al., 2006). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.97 Å (CH2Cl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line.
Fig. 2.
Partial packing view showing the formation of the chain through N—H···O hydrogen bondings. H atoms not involved in H bonds have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x, y + 1, ...

Crystal data

C9H10ClNOZ = 4
Mr = 183.63F000 = 384
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.326 (3) ÅCell parameters from 88 reflections
b = 9.742 (3) Åθ = 18.0–22.6º
c = 11.491 (4) ŵ = 0.37 mm1
α = 91.21 (1)ºT = 299 (2) K
β = 97.97 (1)ºFlat prism, colourless
γ = 98.08 (1)º0.75 × 0.45 × 0.17 mm
V = 913.1 (5) Å3

Data collection

Stoe STADI-4 four-circle diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 1.8º
T = 299(2) Kh = −9→9
Profile fitted scans 2θ/ω=1/1k = −11→11
Absorption correction: empirical (using intensity measurements)(North et al., 1968)l = 0→13
Tmin = 0.704, Tmax = 0.9183 standard reflections
3214 measured reflections every 180 min
3214 independent reflections intensity decay: none
2651 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0776P)2 + 0.2235P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3214 reflectionsΔρmax = 0.37 e Å3
221 parametersΔρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.38090 (9)0.90157 (7)0.35203 (6)0.0807 (3)
C10.1956 (3)0.9307 (2)0.40069 (18)0.0552 (5)
H1A0.19661.02950.41430.066*
H1B0.10390.89700.34060.066*
C20.1756 (2)0.85664 (19)0.51299 (17)0.0451 (4)
O10.16114 (19)0.72994 (13)0.51555 (13)0.0570 (4)
N10.1734 (2)0.94148 (15)0.60666 (14)0.0464 (4)
H10.18521.02900.59510.056*
C30.1537 (2)0.90157 (18)0.72263 (17)0.0444 (4)
C40.2336 (2)0.9904 (2)0.81524 (18)0.0518 (5)
H40.30031.07080.79960.062*
C50.2157 (3)0.9613 (2)0.93068 (19)0.0606 (6)
C60.3022 (4)1.0612 (4)1.0296 (2)0.0896 (9)
H6A0.22231.09711.06980.108*0.56 (3)
H6B0.36781.13640.99800.108*0.56 (3)
H6C0.37121.01361.08380.108*0.56 (3)
H6D0.41861.06761.03130.108*0.44 (3)
H6E0.27301.02831.10310.108*0.44 (3)
H6F0.26971.15111.01730.108*0.44 (3)
C70.1180 (3)0.8405 (3)0.9516 (2)0.0731 (7)
H70.10620.81821.02860.088*
C80.0373 (3)0.7520 (3)0.8598 (2)0.0752 (7)
H8−0.02830.67110.87570.090*
C90.0528 (3)0.7821 (2)0.7446 (2)0.0561 (5)
H9−0.00340.72330.68300.067*
Cl20.11737 (11)0.34078 (8)0.80955 (6)0.0934 (3)
C100.1373 (3)0.4359 (2)0.68356 (19)0.0552 (5)
H10A0.02960.45340.64830.066*
H10B0.20350.52500.70630.066*
C110.2149 (2)0.36313 (18)0.59258 (17)0.0458 (4)
O20.2274 (2)0.24012 (14)0.59346 (14)0.0646 (4)
N20.26143 (19)0.44939 (15)0.51024 (14)0.0449 (4)
H20.24760.53440.52040.054*
C120.3306 (2)0.41834 (18)0.40855 (16)0.0429 (4)
C130.3227 (2)0.5128 (2)0.31995 (18)0.0508 (5)
H130.27220.59080.32930.061*
C140.3889 (3)0.4929 (2)0.21770 (19)0.0608 (5)
C150.3778 (5)0.5963 (4)0.1217 (3)0.0957 (10)
H15A0.33170.54850.04820.115*0.58 (4)
H15B0.48550.64340.11570.115*0.58 (4)
H15C0.30930.66270.14040.115*0.58 (4)
H15D0.41930.68790.15470.115*0.42 (4)
H15E0.26550.59300.08710.115*0.42 (4)
H15F0.44170.57370.06250.115*0.42 (4)
C160.4629 (3)0.3749 (2)0.2057 (2)0.0634 (6)
H160.50660.35880.13730.076*
C170.4722 (3)0.2827 (2)0.2932 (2)0.0591 (5)
H170.52330.20500.28380.071*
C180.4068 (2)0.30246 (19)0.39596 (18)0.0500 (5)
H180.41410.23910.45520.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0941 (5)0.0763 (4)0.0856 (5)0.0268 (4)0.0434 (4)0.0205 (3)
C10.0660 (13)0.0471 (11)0.0538 (11)0.0150 (9)0.0065 (9)0.0008 (9)
C20.0457 (10)0.0383 (10)0.0517 (10)0.0097 (7)0.0048 (8)−0.0024 (8)
O10.0761 (10)0.0348 (7)0.0624 (9)0.0128 (6)0.0136 (7)−0.0034 (6)
N10.0570 (9)0.0306 (7)0.0522 (9)0.0080 (6)0.0092 (7)−0.0004 (6)
C30.0441 (10)0.0387 (9)0.0525 (11)0.0120 (7)0.0090 (8)0.0004 (8)
C40.0528 (11)0.0478 (10)0.0551 (11)0.0082 (9)0.0089 (9)−0.0041 (8)
C50.0609 (13)0.0713 (14)0.0532 (12)0.0228 (11)0.0086 (10)−0.0025 (10)
C60.096 (2)0.113 (2)0.0581 (15)0.0220 (17)0.0037 (13)−0.0182 (14)
C70.0863 (17)0.0806 (17)0.0607 (14)0.0240 (14)0.0256 (12)0.0161 (12)
C80.0840 (17)0.0607 (14)0.0870 (18)0.0042 (12)0.0381 (14)0.0144 (13)
C90.0550 (12)0.0471 (11)0.0674 (13)0.0047 (9)0.0160 (10)−0.0012 (9)
Cl20.1420 (7)0.0821 (5)0.0695 (4)0.0262 (4)0.0490 (4)0.0212 (3)
C100.0652 (13)0.0455 (10)0.0574 (12)0.0059 (9)0.0200 (10)0.0012 (9)
C110.0464 (10)0.0351 (9)0.0555 (11)0.0026 (7)0.0089 (8)0.0005 (8)
O20.0894 (11)0.0347 (7)0.0764 (10)0.0123 (7)0.0312 (8)0.0091 (7)
N20.0530 (9)0.0295 (7)0.0540 (9)0.0056 (6)0.0144 (7)−0.0001 (6)
C120.0413 (9)0.0352 (9)0.0500 (10)−0.0007 (7)0.0060 (8)−0.0043 (7)
C130.0554 (11)0.0431 (10)0.0564 (11)0.0104 (8)0.0129 (9)0.0025 (8)
C140.0697 (14)0.0610 (13)0.0536 (12)0.0078 (10)0.0169 (10)0.0029 (10)
C150.136 (3)0.099 (2)0.0668 (17)0.039 (2)0.0418 (17)0.0267 (15)
C160.0687 (14)0.0658 (14)0.0577 (13)0.0052 (11)0.0221 (10)−0.0109 (10)
C170.0582 (12)0.0476 (11)0.0742 (14)0.0101 (9)0.0182 (10)−0.0102 (10)
C180.0505 (11)0.0399 (10)0.0598 (12)0.0072 (8)0.0089 (9)−0.0013 (8)

Geometric parameters (Å, °)

Cl1—C11.769 (2)Cl2—C101.750 (2)
C1—C21.510 (3)C10—C111.516 (3)
C1—H1A0.9700C10—H10A0.9700
C1—H1B0.9700C10—H10B0.9700
C2—O11.225 (2)C11—O21.218 (2)
C2—N11.347 (2)C11—N21.340 (2)
N1—C31.421 (3)N2—C121.417 (3)
N1—H10.8600N2—H20.8600
C3—C91.386 (3)C12—C181.385 (3)
C3—C41.389 (3)C12—C131.388 (3)
C4—C51.386 (3)C13—C141.387 (3)
C4—H40.9300C13—H130.9300
C5—C71.379 (4)C14—C161.391 (3)
C5—C61.512 (4)C14—C151.512 (3)
C6—H6A0.9600C15—H15A0.9600
C6—H6B0.9600C15—H15B0.9600
C6—H6C0.9600C15—H15C0.9600
C6—H6D0.9600C15—H15D0.9600
C6—H6E0.9600C15—H15E0.9600
C6—H6F0.9600C15—H15F0.9600
C7—C81.382 (4)C16—C171.364 (3)
C7—H70.9300C16—H160.9300
C8—C91.381 (3)C17—C181.388 (3)
C8—H80.9300C17—H170.9300
C9—H90.9300C18—H180.9300
C2—C1—Cl1109.99 (14)C11—C10—Cl2113.26 (15)
C2—C1—H1A109.7C11—C10—H10A108.9
Cl1—C1—H1A109.7Cl2—C10—H10A108.9
C2—C1—H1B109.7C11—C10—H10B108.9
Cl1—C1—H1B109.7Cl2—C10—H10B108.9
H1A—C1—H1B108.2H10A—C10—H10B107.7
O1—C2—N1124.31 (18)O2—C11—N2124.93 (19)
O1—C2—C1121.44 (17)O2—C11—C10123.32 (18)
N1—C2—C1114.25 (16)N2—C11—C10111.70 (16)
C2—N1—C3126.86 (15)C11—N2—C12128.26 (16)
C2—N1—H1116.6C11—N2—H2115.9
C3—N1—H1116.6C12—N2—H2115.9
C9—C3—C4120.1 (2)C18—C12—C13119.93 (18)
C9—C3—N1122.24 (18)C18—C12—N2123.38 (17)
C4—C3—N1117.60 (17)C13—C12—N2116.68 (17)
C5—C4—C3121.0 (2)C14—C13—C12121.09 (19)
C5—C4—H4119.5C14—C13—H13119.5
C3—C4—H4119.5C12—C13—H13119.5
C7—C5—C4118.3 (2)C13—C14—C16118.2 (2)
C7—C5—C6121.8 (2)C13—C14—C15120.3 (2)
C4—C5—C6119.9 (2)C16—C14—C15121.4 (2)
C5—C6—H6A109.5C14—C15—H15A109.5
C5—C6—H6B109.5C14—C15—H15B109.5
H6A—C6—H6B109.5H15A—C15—H15B109.5
C5—C6—H6C109.5C14—C15—H15C109.5
H6A—C6—H6C109.5H15A—C15—H15C109.5
H6B—C6—H6C109.5H15B—C15—H15C109.5
C5—C6—H6D109.5C14—C15—H15D109.5
H6A—C6—H6D141.1H15A—C15—H15D141.1
H6B—C6—H6D56.3H15B—C15—H15D56.3
H6C—C6—H6D56.3H15C—C15—H15D56.3
C5—C6—H6E109.5C14—C15—H15E109.5
H6A—C6—H6E56.3H15A—C15—H15E56.3
H6B—C6—H6E141.1H15B—C15—H15E141.1
H6C—C6—H6E56.3H15C—C15—H15E56.3
H6D—C6—H6E109.5H15D—C15—H15E109.5
C5—C6—H6F109.5C14—C15—H15F109.5
H6A—C6—H6F56.3H15A—C15—H15F56.3
H6B—C6—H6F56.3H15B—C15—H15F56.3
H6C—C6—H6F141.1H15C—C15—H15F141.1
H6D—C6—H6F109.5H15D—C15—H15F109.5
H6E—C6—H6F109.5H15E—C15—H15F109.5
C5—C7—C8120.9 (2)C17—C16—C14120.7 (2)
C5—C7—H7119.6C17—C16—H16119.6
C8—C7—H7119.6C14—C16—H16119.6
C9—C8—C7120.8 (2)C16—C17—C18121.3 (2)
C9—C8—H8119.6C16—C17—H17119.4
C7—C8—H8119.6C18—C17—H17119.4
C8—C9—C3118.8 (2)C12—C18—C17118.73 (19)
C8—C9—H9120.6C12—C18—H18120.6
C3—C9—H9120.6C17—C18—H18120.6
Cl1—C1—C2—O1−63.8 (2)Cl2—C10—C11—O216.0 (3)
Cl1—C1—C2—N1116.98 (16)Cl2—C10—C11—N2−166.24 (14)
O1—C2—N1—C3−0.3 (3)O2—C11—N2—C121.1 (3)
C1—C2—N1—C3178.88 (17)C10—C11—N2—C12−176.62 (18)
C2—N1—C3—C9−35.4 (3)C11—N2—C12—C18−20.4 (3)
C2—N1—C3—C4147.54 (19)C11—N2—C12—C13161.13 (18)
C9—C3—C4—C50.6 (3)C18—C12—C13—C140.6 (3)
N1—C3—C4—C5177.68 (18)N2—C12—C13—C14179.07 (18)
C3—C4—C5—C70.9 (3)C12—C13—C14—C160.4 (3)
C3—C4—C5—C6−179.0 (2)C12—C13—C14—C15179.5 (2)
C4—C5—C7—C8−1.2 (4)C13—C14—C16—C17−1.0 (4)
C6—C5—C7—C8178.6 (2)C15—C14—C16—C17179.9 (3)
C5—C7—C8—C90.2 (4)C14—C16—C17—C180.7 (4)
C7—C8—C9—C31.3 (4)C13—C12—C18—C17−0.9 (3)
C4—C3—C9—C8−1.7 (3)N2—C12—C18—C17−179.25 (17)
N1—C3—C9—C8−178.6 (2)C16—C17—C18—C120.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.042.891 (2)171
N2—H2···O10.862.132.970 (2)166

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2289).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2333–o2334.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3364.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4611.
  • Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). STADI4 and REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography