PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o196.
Published online 2007 December 6. doi:  10.1107/S1600536807063568
PMCID: PMC2915259

1,2-Di-2-furylethane-1,2-dione

Abstract

The title compound, C10H6O4, lies across a twofold rotation axis through the midpoint of the C—C bond between the two carbonyl groups. The furan ring plane and the plane through all atoms are inclined at 23.88 (1)°. In the crystal structure, weak C—H(...)O hydrogen bonds form sheets in the bc plane and columns down the c axis.

Related literature

For background to the chemistry of vicinal polycarbonyl compounds, see: Rubin & White (1982 [triangle]); Beddoes et al. (1975 [triangle]). For related structures and bond-length data, see: Brown & Sadanaga (1965 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o196-scheme1.jpg

Experimental

Crystal data

  • C10H6O4
  • M r = 190.15
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o196-efi3.jpg
  • a = 14.903 (4) Å
  • b = 30.511 (6) Å
  • c = 3.7770 (8) Å
  • V = 1717.4 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 293 (2) K
  • 0.25 × 0.22 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2069 measured reflections
  • 537 independent reflections
  • 473 reflections with I > 2σ(I)
  • R int = 0.098
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.113
  • S = 1.14
  • 537 reflections
  • 65 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 1990 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063568/sj2428sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063568/sj2428Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2006B08).

supplementary crystallographic information

Comment

The structures of vicinal polycarbonyl compounds have been of interest for many years (Rubin & White, 1982). Bond lengths, bond angles, and torsion angles in such molecules can deviate from 'normal' values in order to minimize the repulsive interactions resulting from juxtaposition of dipolar carbonyl groups (Brown & Sadanaga,1965) and the steric interactions of the chain of carbonyl groups with the end groups present (Beddoes et al., 1975). We report here the crystal structure of the title vicinal dione compound (I), Fig 1.

The molecule lies about a twofold rotation axis at the mid-point of the C5—C5A bond (A = -x + 1/2, -y + 1/2, z). Bond lengths and angles are similar to those observed for benzil (Brown & Sadanaga,1965). The molecule is approximately planar with the maximum deviation from the plane through all atoms 0.954 (1)Å for the O1. The furan ring plane (O2, C2···C4) and the plane through all atoms are inclined at 23.88 (1)°. In the crystal structure, weak C—H···O hydrogen bonds, Table 1, form sheets in the bc plane and columns down the c axis.

Experimental

Furfural (1.92 g, 20.0 mmol) was added to water (20 ml) together with the N,N-dialkylbenzimidazolium salt (1.14 g, 4.0 mmol) and triethylamine (0.5 ml, 3.6 mmol) and the solution stirred vigorously for 2 h under reflux to afford the title compound (1.71 g, yield 70%). Single crystals suitable for X-ray measurements were obtained by recrystallization from THF at room temperature.

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were merged. Hydrogen atoms were fixed geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level. Atoms labelled A are related to other atoms by the symmetry operation -x + 1/2, -y + 1/2, z.
Fig. 2.
The Crystal packing of (I), viewed down the c axis.

Crystal data

C10H6O4F000 = 784
Mr = 190.15Dx = 1.471 Mg m3
Orthorhombic, Fdd2Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 14.903 (4) Åθ = 4–14º
b = 30.511 (6) ŵ = 0.12 mm1
c = 3.7770 (8) ÅT = 293 (2) K
V = 1717.4 (7) Å3Block, colourless
Z = 80.25 × 0.22 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.098
Radiation source: fine-focus sealed tubeθmax = 27.0º
Monochromator: graphiteθmin = 2.7º
T = 293(2) Kh = −18→18
ω scansk = −36→37
Absorption correction: nonel = −4→0
2069 measured reflections3 standard reflections
537 independent reflections every 100 reflections
473 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0528P)2 + 0.6456P] where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
537 reflectionsΔρmax = 0.33 e Å3
65 parametersΔρmin = −0.14 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.31781 (10)0.20624 (6)0.2936 (8)0.0645 (7)
O20.17183 (10)0.15778 (5)0.5125 (7)0.0586 (6)
C10.09123 (18)0.14450 (9)0.6479 (12)0.0668 (9)
H1A0.07350.11540.66730.080*
C20.04119 (18)0.17857 (9)0.7488 (9)0.0598 (8)
H2A−0.01600.17750.84720.072*
C30.09224 (16)0.21647 (8)0.6764 (7)0.0488 (6)
H3A0.07510.24530.71780.059*
C40.17150 (13)0.20269 (6)0.5341 (7)0.0409 (6)
C50.25168 (15)0.22475 (6)0.4110 (8)0.0416 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0430 (8)0.0496 (9)0.1008 (17)0.0044 (7)0.0119 (12)−0.0137 (11)
O20.0446 (8)0.0400 (8)0.0913 (15)−0.0025 (7)−0.0098 (10)0.0031 (11)
C10.0514 (13)0.0527 (13)0.096 (2)−0.0165 (11)−0.0162 (17)0.0175 (17)
C20.0439 (11)0.0709 (16)0.0646 (18)−0.0134 (11)−0.0013 (13)0.0095 (15)
C30.0435 (11)0.0518 (12)0.0513 (13)−0.0025 (10)0.0012 (12)−0.0029 (12)
C40.0393 (11)0.0366 (10)0.0468 (11)−0.0013 (8)−0.0081 (10)0.0021 (11)
C50.0361 (10)0.0406 (11)0.0481 (12)0.0017 (8)−0.0032 (10)−0.0034 (10)

Geometric parameters (Å, °)

O1—C51.219 (3)C2—H2A0.9300
O2—C11.367 (4)C3—C41.364 (3)
O2—C41.373 (2)C3—H3A0.9300
C1—C21.335 (4)C4—C51.448 (3)
C1—H1A0.9300C5—C5i1.541 (4)
C2—C31.411 (4)
C1—O2—C4105.7 (2)C4—C3—H3A126.6
C2—C1—O2111.5 (2)C2—C3—H3A126.6
C2—C1—H1A124.2C3—C4—O2109.52 (19)
O2—C1—H1A124.2C3—C4—C5134.25 (19)
C1—C2—C3106.4 (2)O2—C4—C5116.23 (19)
C1—C2—H2A126.8O1—C5—C4124.63 (19)
C3—C2—H2A126.8O1—C5—C5i119.3 (2)
C4—C3—C2106.9 (2)C4—C5—C5i116.0 (2)
C4—O2—C1—C20.5 (4)C1—O2—C4—C5178.9 (3)
O2—C1—C2—C3−0.2 (4)C3—C4—C5—O1178.9 (3)
C1—C2—C3—C4−0.1 (3)O2—C4—C5—O1−0.3 (4)
C2—C3—C4—O20.4 (3)C3—C4—C5—C5i−5.0 (4)
C2—C3—C4—C5−178.9 (3)O2—C4—C5—C5i175.79 (18)
C1—O2—C4—C3−0.5 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O1ii0.932.613.435 (3)149
C1—H1A···O2iii0.932.823.322 (4)115
C2—H2A···O1iv0.932.643.439 (3)145
C3—H3A···O1i0.932.703.074 (3)105

Symmetry codes: (ii) x−1/4, −y+1/4, z+3/4; (iii) x−1/4, −y+1/4, z−1/4; (iv) x−1/2, y, z+1/2; (i) −x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2428).

References

  • Beddoes, R. L., Cannon, J. R., Heller, M., Mills, O. S., Patrick, V. A. & Rubin, M. B. (1975). Chem. Rev.75, 177–202.
  • Brown, C. J. & Sadanaga, R. (1965). Acta Cryst.18, 158–164.
  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Rubin, M. B. & White, A. H. (1982). Aust. J. Chem.35, 543–556.
  • Sheldrick, G. M. (1990). SHELXTL/PC Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography