PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o190.
Published online 2007 December 6. doi:  10.1107/S1600536807062782
PMCID: PMC2915253

5,10,15,20-Tetra­kis(3,5-difluoro­phen­yl)porphyrin

Abstract

The crystal structure of the title compound, C44H22F8N4, shows an unusual non-planar geometry of the porphyrin ring although the mol­ecule is free of steric crowding around the periphery of the macrocycle. The mol­ecular packing exhibits weak inter­molecular hydrogen bonding (C—H(...)F) and C—H(...)π inter­actions. The molecular symmetry is An external file that holds a picture, illustration, etc.
Object name is e-64-0o190-efi1.jpg.

Related literature

For the stereochemistry of porphyrins and metalloporphyrins, see: Senge (2000 [triangle]); Scheidt & Lee (1987 [triangle]). For a related structure, see: Silvers & Tulinsky (1967 [triangle]). For the preparation of the title compound, see: Tamiaki et al. (2000 [triangle]). For C—H(...)π and C—H(...)F inter­actions, see: Steiner (2002 [triangle]); Thalladi et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o190-scheme1.jpg

Experimental

Crystal data

  • C44H22F8N4
  • M r = 758.66
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0o190-efi2.jpg
  • a = 15.426 (5) Å
  • c = 13.991 (5) Å
  • V = 3329.3 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 233 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.965, T max = 0.986
  • 20353 measured reflections
  • 1145 independent reflections
  • 1049 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.098
  • S = 1.07
  • 1145 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-32 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062782/si2056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062782/si2056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Department of Science and Technology, Government of India (to PB). We thank Mr V. Ramkumar for assistance with the data collection and the Department of Chemistry, IIT Madras, Chennai, for the XRD facility.

supplementary crystallographic information

Comment

Free base porphyrin, H2T(3',5'-DFP)P was synthesised using literature method (Tamiaki et al. 2000). The compound (I) crystallizes in a tetragonal space group, I-4 2d with four molecules in the unit cell. ORTEP of the compound (I) is shown in Fig. 1. The observed bond lengths of the C20N4 core is similar to the related H2TPP structure (Silvers & Tulinsky, 1967). The molecule shows considerable nonplanar geometry (Fig. 1b) with the extent of distortion of the porphyrin ring atoms is as high as + - 0.343 (4) Å and the average displacement of the β-pyrrole carbon is + - ΔCβ = 0.129 (3) Å. Macrocyclic ring (24-atom core) shows ruffled geometry (Senge, 2000) while the related H2TPP shows nearly planar structure. The opposite nitrogens are situated at 4.082Å and it is shorter than that reported for H2TPP (4.20 Å)(Silvers & Tulinsky, 1967). The 3,5-difluorophenyl groups are nearly planar and oriented perpendicular to the porphyrin ring mean plane with an average dihedral angle of 72.7 (5) °. In adition, the meso<i/>-carbon to aryl carbon, C5-C6 distance is found to be 1.499 (2) Å indicating that the aryl group is not significantly conjugated with the porphyrin π-system. The core hydrogens are disordered and are fixed with 50% occupancy on each N atom of the N4H2 core.

Molecular packing diagram of the compound (I) is shown in Fig 2. Unit cell ab plane forms the 2-dimensional (C-H···F) hydrogen-bonded framework parallel to (001) plane. Each porphyrin in the layer is surrounded by four other nearest neighbours through weak hydrogen bonding (C3-H3···F1) interactions. A pair of such C-H···F hydrogen bonding is observed with each adjacent porphyrin with a shortest H3···F1 distance of 2.656 Å. Such a long hydrogen bonding distance is expected for weak C-H···F interactions (Thalladi et al., 1998). Furthermore, layers are interconnected via C-H···π interactions (Fig.3). On each face of the porphyrin, there is a pair of symmetry related C-H···π interactions for aryl(C7-H7)···C1(α-pyrrole) with H7···C1 distance of 2.869 Å between the two other adjacent porphyrins from the neighbouring layer. This H7···C1 distance indicates weak C-H···π interactions (Steiner, 2002). The title compound shows unusual nonplanar geometry of the macrocyclic ring.

Experimental

5,10,15,20-tetrakis(3',5'-difluorophenyl)porphyrin, H2T(3',5'-DFP)P was prepared using literature method (Tamiaki et al., 2000). Crystals of H2T(3',5'-DFP)P were grown by vapor diffusion of hexane to the CHCl3 solution of the porphyrin over a period of five days.

Refinement

H atoms were placed in constrained positions (C—H = 0.93 Å and N—H = 0.86 Å) and refined using riding model with Uiso(H) = 1.2 or 1.5 times Ueq(C). The Friedel pairs have been merged, because the Flack parameter could not be reliably determined. The structure mostly contains C, H, N atoms only and the data was collected with Mo Kα radiation, so no anomalous dispersion effects could be observed.

Figures

Fig. 1.
(a) The structure of (I) with the atom numbering scheme. Side view of the compound is shown in (b). Thermal ellipsoids shown at 50% probability level.
Fig. 2.
Molecular packing diagram of the compound, (I). The two-dimensional framework shows the C—H···F interactions parallel to ab plane.
Fig. 3.
Shows the bridging of two layers by interporphyrin (C—H···π) interactions (viewed along unit cell 'b' axis). The short contacts are shown in dotted red lines. The flourine atoms are shown in green.

Crystal data

C44H22F8N4Dx = 1.514 Mg m3
Mr = 758.66Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 5676 reflections
Hall symbol: I -4 2bwθ = 2.7–27.4°
a = 15.426 (5) ŵ = 0.12 mm1
c = 13.991 (5) ÅT = 233 K
V = 3329.3 (19) Å3Plate, purple
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 1544

Data collection

Bruker APEXII CCD area-detector diffractometer1145 independent reflections
Radiation source: fine-focus sealed tube1049 reflections with I > 2σ(I)
graphiteRint = 0.041
ω and [var phi] scanθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −20→20
Tmin = 0.965, Tmax = 0.986k = −19→18
20353 measured reflectionsl = −18→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0579P)2 + 1.6388P] where P = (Fo2 + 2Fc2)/3
1145 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.62343 (12)−0.15392 (12)0.26244 (14)0.0234 (4)
C20.71372 (13)−0.17616 (13)0.25131 (18)0.0289 (4)
H20.7375−0.23140.25610.035*
C30.75734 (13)−0.10209 (12)0.23267 (16)0.0285 (4)
H30.8164−0.09700.22050.034*
C40.69521 (12)−0.03261 (13)0.23514 (15)0.0233 (4)
C50.71381 (12)0.05575 (12)0.22542 (14)0.0225 (4)
C60.80391 (13)0.08176 (12)0.19734 (15)0.0240 (4)
C70.87363 (13)0.07798 (15)0.25940 (16)0.0310 (5)
H70.86650.05830.32170.037*
C80.95385 (14)0.10405 (16)0.22687 (18)0.0353 (5)
C90.96818 (14)0.13294 (16)0.1348 (2)0.0385 (6)
H91.02300.14960.11410.046*
C100.89782 (17)0.13583 (16)0.07556 (17)0.0380 (5)
C110.81595 (13)0.11143 (15)0.10383 (16)0.0299 (5)
H110.76950.11460.06160.036*
N10.61430 (10)−0.06642 (10)0.25215 (12)0.0230 (4)
H10.5666−0.03770.25570.028*0.50
F11.02219 (8)0.10061 (13)0.28671 (12)0.0550 (5)
F20.90872 (12)0.16429 (14)−0.01500 (13)0.0632 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0216 (9)0.0199 (8)0.0288 (10)0.0015 (7)−0.0003 (8)0.0020 (7)
C20.0221 (9)0.0225 (9)0.0420 (11)0.0048 (7)0.0006 (9)0.0041 (9)
C30.0190 (9)0.0260 (9)0.0404 (11)0.0033 (7)0.0033 (8)0.0040 (9)
C40.0180 (8)0.0239 (9)0.0280 (9)0.0000 (7)0.0029 (8)0.0009 (7)
C50.0193 (8)0.0209 (9)0.0273 (9)0.0001 (7)0.0017 (7)0.0001 (7)
C60.0211 (9)0.0183 (8)0.0325 (9)0.0001 (7)0.0040 (8)−0.0020 (8)
C70.0237 (10)0.0389 (11)0.0302 (10)−0.0006 (8)0.0031 (8)−0.0023 (9)
C80.0207 (9)0.0393 (12)0.0458 (12)−0.0035 (9)−0.0008 (9)−0.0085 (11)
C90.0239 (10)0.0382 (12)0.0533 (14)−0.0089 (9)0.0134 (10)−0.0070 (11)
C100.0377 (12)0.0366 (12)0.0396 (12)−0.0041 (10)0.0124 (10)0.0048 (10)
C110.0252 (9)0.0305 (10)0.0340 (10)−0.0003 (9)0.0014 (8)0.0046 (9)
N10.0169 (7)0.0201 (8)0.0319 (9)−0.0001 (6)0.0009 (7)0.0015 (6)
F10.0214 (7)0.0862 (13)0.0575 (9)−0.0066 (7)−0.0062 (6)−0.0118 (10)
F20.0548 (10)0.0853 (13)0.0495 (9)−0.0146 (9)0.0159 (8)0.0246 (9)

Geometric parameters (Å, °)

C1—N11.365 (2)C6—C111.398 (3)
C1—C5i1.404 (3)C7—C81.378 (3)
C1—C21.443 (3)C7—H70.9300
C2—C31.351 (3)C8—F11.347 (3)
C2—H20.9300C8—C91.381 (4)
C3—C41.438 (3)C9—C101.366 (4)
C3—H30.9300C9—H90.9300
C4—N11.373 (3)C10—F21.351 (3)
C4—C51.400 (3)C10—C111.376 (3)
C5—C1ii1.404 (3)C11—H110.9300
C5—C61.499 (3)N1—H10.8600
C6—C71.383 (3)
N1—C1—C5i125.93 (17)C8—C7—C6118.6 (2)
N1—C1—C2108.87 (16)C8—C7—H7120.7
C5i—C1—C2125.04 (17)C6—C7—H7120.7
C3—C2—C1107.48 (17)F1—C8—C7119.1 (2)
C3—C2—H2126.3F1—C8—C9117.9 (2)
C1—C2—H2126.3C7—C8—C9123.1 (2)
C2—C3—C4107.07 (17)C10—C9—C8116.69 (19)
C2—C3—H3126.5C10—C9—H9121.7
C4—C3—H3126.5C8—C9—H9121.7
N1—C4—C5124.97 (17)F2—C10—C9118.7 (2)
N1—C4—C3109.07 (16)F2—C10—C11118.2 (2)
C5—C4—C3125.93 (18)C9—C10—C11123.1 (2)
C4—C5—C1ii125.26 (18)C10—C11—C6118.7 (2)
C4—C5—C6118.44 (16)C10—C11—H11120.6
C1ii—C5—C6116.28 (17)C6—C11—H11120.6
C7—C6—C11119.85 (18)C1—N1—C4107.47 (16)
C7—C6—C5123.03 (19)C1—N1—H1126.3
C11—C6—C5117.12 (18)C4—N1—H1126.3
N1—C1—C2—C3−1.2 (3)C6—C7—C8—F1−179.98 (19)
C5i—C1—C2—C3174.4 (2)C6—C7—C8—C9−0.7 (4)
C1—C2—C3—C41.9 (3)F1—C8—C9—C10−180.0 (2)
C2—C3—C4—N1−2.0 (3)C7—C8—C9—C100.7 (4)
C2—C3—C4—C5175.8 (2)C8—C9—C10—F2179.5 (2)
N1—C4—C5—C1ii4.3 (3)C8—C9—C10—C11−0.2 (4)
C3—C4—C5—C1ii−173.2 (2)F2—C10—C11—C6179.9 (2)
N1—C4—C5—C6−174.02 (18)C9—C10—C11—C6−0.4 (4)
C3—C4—C5—C68.5 (3)C7—C6—C11—C100.4 (3)
C4—C5—C6—C7−74.1 (3)C5—C6—C11—C10−180.0 (2)
C1ii—C5—C6—C7107.5 (2)C5i—C1—N1—C4−175.62 (19)
C4—C5—C6—C11106.3 (2)C2—C1—N1—C4−0.1 (2)
C1ii—C5—C6—C11−72.1 (2)C5—C4—N1—C1−176.6 (2)
C11—C6—C7—C80.1 (3)C3—C4—N1—C11.3 (2)
C5—C6—C7—C8−179.5 (2)

Symmetry codes: (i) y+1/2, −x+1/2, −z+1/2; (ii) −y+1/2, x−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···C1iii0.932.873.634 (2)140
C3—H3···F1iv0.932.663.484 (2)148

Symmetry codes: (iii) y+1, x−1/2, z+1/4; (iv) −x+2, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2056).

References

  • Bruker (1999). SADABS Brucker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bonding (Berlin), 64, 1–73.
  • Senge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 1, ch. 6. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc.89, 3331–3336. [PubMed]
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]
  • Tamiaki, H., Matsumoto, N., Unno, S., Shinoda, S. & Tsukube, H. (2000). Inorg. Chim. Acta, 300–302, 243–249.
  • Thalladi, V. R., Weiss, H.-C., Blaser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc.120, 8702–8710.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography