PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o187.
Published online 2007 December 6. doi:  10.1107/S1600536807063659
PMCID: PMC2915250

Redetermination of 4-hydroxy­benzaldehyde

Abstract

This is a redetermination of the structure of the title compound, C7H6O2, which was first reported by Iwasaki [Acta Cryst. (1977 [triangle]), B33, 1646–1648]. The results are obtained with greater precision in the present study. Crystal packing is stabilized by inter­molecular O—H(...)O inter­actions between the hydroxyl and aldehyde groups which link the mol­ecules into chains in a zigzag pattern along the [110] plane of the unit cell.

Related literature

For the previous structure determination, see: Iwasaki (1977 [triangle]). Forrelated structures, see: Matos Beja et al. (1997 [triangle], 2000 [triangle]); Paixão et al. (2000 [triangle]); Silva et al. (2004 [triangle]). For related literature, see: Antonucci (1978 [triangle]); Bigi et al. (1999 [triangle]); Dean (1963 [triangle]); Samal et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o187-scheme1.jpg

Experimental

Crystal data

  • C7H6O2
  • M r = 122.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o187-efi1.jpg
  • a = 6.6992 (8) Å
  • b = 13.5550 (12) Å
  • c = 7.1441 (11) Å
  • β = 112.871 (16)°
  • V = 597.74 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 (2) K
  • 0.49 × 0.37 × 0.24 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.949, T max = 0.970
  • 3559 measured reflections
  • 1170 independent reflections
  • 841 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.117
  • S = 1.06
  • 1170 reflections
  • 86 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063659/lx2042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063659/lx2042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MTS thanks the Sambhram Institute of Technology for the use of their research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

The title compound, 4-hydroxy benzaldehyde (Fig. 1) is used in the preparation of aldehyde methacrylates and finds application in the manufacture of dental materials which can form strong and durable bonds with dentin (Antonucci, 1978). It is used in the preparation of benzopyrans and have wide applications in the perfume, cosmetic and pharmaceutical industry (Dean, 1963; Bigi et al., 1999). They are also used in the preparation of chelating resins (Samal et al., 1999).

The crystal structures of p-hydroxybenzaldehyde (Iwasaki, 1977), 2-bromo-5-hydroxybenzaldehyde (Matos Beja et al., 2000), a new polymorph of 2-bromo-5-hydroxybenzaldehyde (Silva et al., 2004), 3-hydroxybenzaldehyde (Paixão et al., 2000) and 2,4-dibromo-5-hydroxybenzaldehyde, (Matos Beja et al., 1997) have been reported. In view of the importance of the title compound in the pharmaceutical industry, this paper reports a redetermination of the crystal structure with greater precision and accuracy. Crystal packing is stabilized by intermolecular O—H···O interactions between the hydroxyl and aldlehyde groups which link the molecules into chains in a zigzag pattern along the [110] plane of the unit cell (Fig. 2).

Experimental

A sample of 4-hydroxybenzaldehyde was obtained from Sigma–Aldrich and was recrystallized from ethylacetate by slow evaporation to obtain good quality crystals (m.p.: 385–387 K).

Refinement

The hydroxyl H was located in a difference Fourier map and all parameters were freely refined. All other H atoms were placed in their calculated places and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.21Ueq(C).

Figures

Fig. 1.
ORTEP view of the title compound, showing the atom numbering scheme and 50% probability displacement ellipsoids.
Fig. 2.
The molecular packing for the title compound viewed down the c axis. Dashed lines indicate C—H···O intermolecular hydrogen bonds.

Crystal data

C7H6O2F000 = 256
Mr = 122.12Dx = 1.357 Mg m3
Monoclinic, P21/cMelting point = 385–387 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 6.6992 (8) ÅCell parameters from 1669 reflections
b = 13.5550 (12) Åθ = 5.3–29.0º
c = 7.1441 (11) ŵ = 0.10 mm1
β = 112.871 (16)ºT = 296 (2) K
V = 597.74 (15) Å3Chunk, colourless
Z = 40.49 × 0.37 × 0.24 mm

Data collection

Oxford Diffraction Gemini R CCD diffractometer1170 independent reflections
Radiation source: fine-focus sealed tube841 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 26.0º
T = 296(2) Kθmin = 5.5º
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)k = −15→16
Tmin = 0.949, Tmax = 0.970l = −8→8
3559 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117  w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1170 reflectionsΔρmax = 0.13 e Å3
86 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1345 (2)0.72809 (8)0.1335 (2)0.0652 (4)
H10.016 (4)0.7359 (17)0.140 (3)0.092 (8)*
O20.2691 (2)0.26982 (8)0.3786 (2)0.0633 (4)
C10.1834 (2)0.63218 (11)0.1834 (2)0.0458 (4)
C20.3718 (2)0.59530 (11)0.1700 (2)0.0499 (4)
H20.45870.63590.12840.060*
C30.4277 (2)0.49829 (11)0.2187 (2)0.0465 (4)
H30.55420.47400.21120.056*
C40.2990 (2)0.43542 (11)0.2793 (2)0.0417 (4)
C50.1100 (2)0.47379 (11)0.2921 (2)0.0452 (4)
H50.02180.43300.33170.054*
C60.0543 (2)0.57089 (11)0.2467 (2)0.0470 (4)
H6−0.06980.59590.25810.056*
C70.3667 (3)0.33405 (12)0.3294 (2)0.0509 (4)
H70.49810.31610.32350.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0635 (8)0.0422 (7)0.1018 (10)0.0034 (6)0.0451 (7)0.0091 (6)
O20.0586 (7)0.0434 (7)0.0917 (9)−0.0019 (5)0.0332 (7)0.0049 (6)
C10.0463 (8)0.0385 (8)0.0547 (9)−0.0030 (6)0.0219 (7)−0.0039 (7)
C20.0472 (9)0.0463 (9)0.0636 (10)−0.0078 (7)0.0297 (8)−0.0039 (7)
C30.0372 (7)0.0483 (9)0.0582 (9)−0.0026 (6)0.0231 (7)−0.0089 (7)
C40.0396 (8)0.0404 (8)0.0447 (8)−0.0013 (6)0.0157 (6)−0.0058 (6)
C50.0417 (8)0.0450 (9)0.0536 (9)−0.0050 (7)0.0235 (7)−0.0012 (7)
C60.0404 (8)0.0466 (9)0.0593 (9)0.0020 (7)0.0252 (7)−0.0018 (7)
C70.0430 (8)0.0455 (9)0.0648 (10)−0.0012 (7)0.0217 (8)−0.0055 (7)

Geometric parameters (Å, °)

O1—C11.354 (2)C3—H30.9300
O1—H10.82 (3)C4—C51.404 (2)
O2—C71.219 (2)C4—C71.448 (2)
C1—C21.395 (2)C5—C61.372 (2)
C1—C61.395 (2)C5—H50.9300
C2—C31.374 (2)C6—H60.9300
C2—H20.9300C7—H70.9300
C3—C41.395 (2)
C1—O1—H1104.4 (16)C3—C4—C7118.98 (13)
O1—C1—C2117.30 (14)C5—C4—C7122.62 (13)
O1—C1—C6122.68 (14)C6—C5—C4120.61 (13)
C2—C1—C6120.02 (14)C6—C5—H5119.7
C3—C2—C1119.35 (14)C4—C5—H5119.7
C3—C2—H2120.3C5—C6—C1120.12 (14)
C1—C2—H2120.3C5—C6—H6119.9
C2—C3—C4121.50 (14)C1—C6—H6119.9
C2—C3—H3119.3O2—C7—C4126.70 (15)
C4—C3—H3119.3O2—C7—H7116.7
C3—C4—C5118.39 (13)C4—C7—H7116.7
O1—C1—C2—C3−179.85 (14)C7—C4—C5—C6178.77 (14)
C6—C1—C2—C30.3 (2)C4—C5—C6—C11.2 (2)
C1—C2—C3—C40.7 (2)O1—C1—C6—C5178.90 (14)
C2—C3—C4—C5−0.8 (2)C2—C1—C6—C5−1.2 (2)
C2—C3—C4—C7−179.78 (14)C3—C4—C7—O2−177.67 (15)
C3—C4—C5—C6−0.2 (2)C5—C4—C7—O23.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (3)1.92 (3)2.731 (2)171 (2)

Symmetry codes: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2042).

References

  • Antonucci, J. M. (1978). J. Dent. Res.57, 500–505. [PubMed]
  • Bigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem.64, 1033–1035. [PubMed]
  • Bruker (2000). SHELXTL Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds London: Butterworth.
  • Iwasaki, F. (1977). Acta Cryst. B33, 1646–1648.
  • Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d’A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494–496.
  • Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d’A. & Serra, A. C. (2000). Acta Cryst. C56, 354–355. [PubMed]
  • Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Paixão, J. A., Matos Beja, A., Ramos Silva, M., Alte da Veiga, L. & Serra, A. C. (2000). Acta Cryst. C56, 1348–1350. [PubMed]
  • Samal, S., Das, R. R., Sahoo, D. & Acharya, S. (1999). Polym. Int.44, 41–48.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Silva, M. R., Paixão, J. A., Beja, A. M., Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d’A. (2004). Acta Cryst. E60, o84–o85.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography