PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o155.
Published online 2007 December 6. doi:  10.1107/S1600536807056607
PMCID: PMC2915223

N 2,N 2′-Bis(3-nitro­benzyl­idene)pyridine-2,6-dicarbohydrazide dimethyl­formamide disolvate trihydrate

Abstract

In the title compound, C21H15N7O6·2C3H7NO·3H2O, the N 2,N 2′-bis­(3-nitro­benzyl­idene)pyridine-2,6-dicarbohydrazide and one water mol­ecule are located on a twofold rotation axis. The mol­ecules are connected by hydrogen bonds. One dimethylformamide molecule is disordered over two positions; the site occupancy factors are ca 0.8 and 0.2.

Related literature

Tridentate ligands with 2,6-dipicolinoyhydrazone have been intensively studied due to their inter­esting coordination modes (Paolucci et al., 1985 [triangle]; Chen et al., 1996 [triangle], 1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o155-scheme1.jpg

Experimental

Crystal data

  • C21H15N7O6·2C3H7NO·3H2O
  • M r = 661.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o155-efi1.jpg
  • a = 24.704 (3) Å
  • b = 10.4815 (12) Å
  • c = 14.4792 (16) Å
  • β = 120.355 (2)°
  • V = 3235.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 273 (2) K
  • 0.22 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.977, T max = 0.979
  • 9211 measured reflections
  • 3170 independent reflections
  • 2222 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.169
  • S = 1.08
  • 3170 reflections
  • 272 parameters
  • 51 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Bruker, 2001 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807056607/bt2593sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807056607/bt2593Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science Foundation of the South Central National University (grant No. y2205007) and Hubei Provincial Natural Science Foundation of China (grant No. 2007ABA345)

supplementary crystallographic information

Comment

In recent years, hydrazones, possessing different donor atoms or cavities, have been investigated due to their coordinating capability and some biological activities, especially in bis-arylhydrazones. (Paolucci et al., 1985; Chen et al., 1996, 1997) 2,6-dipicolinoylhydrazine as a multidentate ligand is very useful for the research of coordination modes. As part of our continuing studies of the structures of hydrazones, we report here the synthesis and crystal structure of a novel tridentate ligand. One water molecule is inserted in the cavity of the hydrazone, each of the remaining water molecules and dimethylformamide solvents are located at the two sides of pyridyl ring. N, N-dimethylformamide molecules are disordered over two sites with unequal occupancy (Figure 1). In the title compound (I), the two spacer units (one is from atom C1 to C6, another is from atom C1a to C6a.) adopt a nearly planar all-trans conformation. The pyridyl ring is effectively coplanar with two spacer units. The two independent aryl rings are essentially coplanar with these spacer units, while the nitro-groups are slightly twisted out of the plane of these spacer units. The independent molecular components are linked by hydrogen bonds.

Experimental

To a solution of 3-nitrobenzaldehyde (1.66 g, 11 mmol) in absolute ethanol (40 ml) a suspension of 2,6-dipicolinoyhydrazine in the same solvent (50 ml) was added at 353 K. The mixture was left to react at reflux for 10 h, then the pale yellow product was filtered, washed with hot ethanol (20 ml portion) three times and dried in vacuo. Crystals suitable for X-ray diffraction were obtained from dimethylformamide-methanol (3:1 v/v) over a period of about three weeks. Melting point: 601 K.

Refinement

Corresponding distances and angles of the disordered DMF molecule, were restrained to be equal. Their anisotropic displacement parameters were restrained to an isotropic shape. Refinement of the site-occupancy factors for the two components gave values of 0.78 (1) and 0.22 (1) for the major and minor components. All the H atoms bonded to C atoms were set to ideal geometrical positions with C–H ranging from 0.93Å to 0.96Å and with Uiso(H) =1.2Ueq(aromatic C) or 1.5Ueq(methyl C). Coordinates of the H atoms bonded to N or O atoms were refined with Uiso(H) =1.2Ueq(N) or 1.5Ueq(O), respectively.

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Crystal data

C21H15N7O6·2C3H7NO·3H2OF000 = 1392
Mr = 661.64Dx = 1.358 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2433 reflections
a = 24.704 (3) Åθ = 2.4–24.1º
b = 10.4815 (12) ŵ = 0.11 mm1
c = 14.4792 (16) ÅT = 273 (2) K
β = 120.355 (2)ºBlock, pale yellow
V = 3235.2 (6) Å30.22 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3170 independent reflections
Radiation source: fine-focus sealed tube2222 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
T = 273(2) Kθmax = 26.0º
phi and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001)h = −30→30
Tmin = 0.977, Tmax = 0.979k = −12→12
9211 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169  w = 1/[σ2(Fo2) + (0.1056P)2 + 0.1192P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3170 reflectionsΔρmax = 0.43 e Å3
272 parametersΔρmin = −0.17 e Å3
51 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.02389 (8)0.81428 (16)0.20004 (15)0.0577 (5)
C20.02453 (11)0.94590 (19)0.1985 (2)0.0813 (7)
H20.04150.98880.16270.098*
C30.00001.0127 (3)0.25000.0923 (11)
H30.00001.10150.25000.111*
C40.05053 (9)0.74204 (17)0.14262 (16)0.0583 (5)
C50.07425 (8)0.42180 (18)0.11595 (15)0.0603 (5)
H50.05740.39090.15620.072*
C60.09827 (8)0.33080 (17)0.06894 (15)0.0563 (5)
C70.09512 (10)0.20133 (19)0.08487 (19)0.0724 (6)
H70.07770.17460.12550.087*
C80.11679 (11)0.11154 (19)0.0428 (2)0.0797 (7)
H80.11350.02530.05430.096*
C90.14336 (10)0.1483 (2)−0.01612 (18)0.0739 (6)
H90.15850.0882−0.04470.089*
C100.14703 (8)0.27662 (19)−0.03173 (15)0.0601 (5)
C110.12441 (8)0.36987 (18)0.00764 (15)0.0562 (5)
H110.12650.4558−0.00620.067*
N10.00000.74859 (17)0.25000.0504 (5)
N20.05128 (7)0.61435 (14)0.15307 (13)0.0569 (4)
H2A0.0369 (9)0.573 (2)0.1909 (17)0.068*
N30.07557 (7)0.54085 (15)0.10391 (12)0.0569 (4)
N40.17601 (8)0.3184 (2)−0.09403 (15)0.0781 (5)
O10.06961 (7)0.79807 (14)0.09078 (13)0.0815 (5)
O20.18130 (10)0.4303 (2)−0.10546 (17)0.1116 (7)
O30.19383 (10)0.2370 (2)−0.13148 (17)0.1126 (7)
O50.00000.44674 (18)0.25000.0710 (6)
H5A0.0265 (11)0.402 (2)0.3000 (19)0.107*
O60.07737 (13)0.7056 (2)−0.08613 (17)0.1214 (8)
H6A0.070 (2)0.726 (4)−0.040 (3)0.182*
H6B0.1015 (18)0.756 (3)−0.094 (4)0.182*
C120.18750 (15)0.7702 (3)−0.1301 (2)0.0744 (9)0.781 (4)
H12A0.17560.6860−0.13000.089*0.781 (4)
C130.2617 (2)0.6854 (4)−0.1750 (4)0.1137 (14)0.781 (4)
H13A0.24870.6065−0.15860.171*0.781 (4)
H13B0.30650.6928−0.13250.171*0.781 (4)
H13C0.24910.6871−0.24950.171*0.781 (4)
C140.2445 (2)0.9163 (4)−0.1734 (4)0.1282 (17)0.781 (4)
H14A0.22290.9772−0.15410.192*0.781 (4)
H14B0.23010.9235−0.24840.192*0.781 (4)
H14C0.28880.9327−0.13300.192*0.781 (4)
O40.1592 (3)0.8575 (10)−0.1098 (8)0.096 (2)0.781 (4)
N50.2325 (5)0.7922 (5)−0.1510 (10)0.073 (2)0.781 (4)
C12'0.1999 (5)0.8886 (10)−0.1353 (9)0.082 (3)0.219 (4)
H12B0.21770.9686−0.11090.099*0.219 (4)
C13'0.2179 (6)0.6684 (10)−0.1392 (10)0.095 (4)0.219 (4)
H13D0.18130.6642−0.13240.142*0.219 (4)
H13E0.25440.6488−0.07160.142*0.219 (4)
H13F0.21410.6078−0.19190.142*0.219 (4)
C14'0.2747 (6)0.8196 (17)−0.1897 (12)0.121 (6)0.219 (4)
H14D0.27480.9089−0.20450.181*0.219 (4)
H14E0.26950.7707−0.24970.181*0.219 (4)
H14F0.31370.7973−0.12720.181*0.219 (4)
O4'0.1497 (12)0.849 (4)−0.142 (3)0.099 (8)0.219 (4)
N5'0.2237 (16)0.7926 (15)−0.171 (3)0.062 (6)0.219 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0639 (10)0.0489 (10)0.0711 (12)−0.0025 (8)0.0420 (10)0.0030 (8)
C20.1114 (17)0.0489 (11)0.1180 (19)−0.0064 (10)0.0832 (16)0.0050 (10)
C30.136 (3)0.0412 (15)0.138 (3)0.0000.097 (3)0.000
C40.0662 (11)0.0531 (11)0.0706 (12)−0.0024 (8)0.0455 (10)0.0034 (8)
C50.0680 (11)0.0576 (11)0.0738 (13)0.0000 (8)0.0493 (10)0.0025 (9)
C60.0582 (10)0.0519 (10)0.0657 (11)0.0016 (8)0.0363 (9)0.0012 (8)
C70.0847 (13)0.0597 (12)0.0920 (15)0.0015 (10)0.0589 (13)0.0080 (10)
C80.0949 (15)0.0510 (11)0.1070 (18)0.0048 (10)0.0612 (15)0.0002 (10)
C90.0766 (13)0.0655 (13)0.0842 (15)0.0101 (10)0.0441 (12)−0.0066 (10)
C100.0562 (10)0.0695 (12)0.0600 (11)0.0031 (8)0.0334 (9)−0.0026 (9)
C110.0557 (10)0.0547 (10)0.0615 (11)0.0002 (7)0.0319 (9)−0.0001 (8)
N10.0563 (11)0.0434 (10)0.0603 (12)0.0000.0359 (10)0.000
N20.0685 (9)0.0526 (9)0.0702 (10)0.0018 (7)0.0503 (9)0.0019 (7)
N30.0634 (9)0.0556 (9)0.0663 (9)0.0017 (7)0.0434 (8)−0.0011 (7)
N40.0780 (11)0.0949 (14)0.0733 (12)0.0066 (10)0.0469 (10)−0.0077 (10)
O10.1125 (12)0.0662 (9)0.1074 (12)−0.0021 (8)0.0861 (11)0.0069 (7)
O20.1550 (18)0.0978 (14)0.1371 (17)−0.0115 (12)0.1145 (15)0.0072 (11)
O30.1362 (16)0.1242 (15)0.1246 (16)0.0128 (12)0.1007 (15)−0.0147 (12)
O50.0975 (16)0.0544 (12)0.0868 (15)0.0000.0654 (13)0.000
O60.1643 (19)0.1363 (18)0.1002 (14)−0.0651 (14)0.0939 (14)−0.0337 (12)
C120.090 (2)0.0651 (18)0.080 (2)−0.0044 (15)0.0518 (17)−0.0003 (14)
C130.114 (3)0.124 (3)0.128 (3)0.012 (2)0.080 (3)−0.008 (2)
C140.152 (4)0.118 (3)0.138 (3)−0.064 (3)0.091 (3)−0.016 (3)
O40.119 (3)0.088 (2)0.120 (6)0.003 (3)0.090 (4)−0.002 (3)
N50.073 (3)0.085 (3)0.071 (6)−0.0111 (18)0.044 (4)−0.0078 (18)
C12'0.094 (6)0.074 (6)0.098 (7)−0.016 (5)0.063 (5)−0.008 (5)
C13'0.092 (7)0.077 (7)0.105 (8)0.010 (6)0.043 (6)−0.016 (6)
C14'0.104 (8)0.175 (14)0.133 (10)−0.008 (8)0.096 (8)−0.035 (9)
O4'0.103 (9)0.126 (13)0.088 (13)0.006 (8)0.063 (8)0.002 (9)
N5'0.064 (9)0.083 (9)0.043 (8)−0.004 (6)0.030 (7)−0.001 (5)

Geometric parameters (Å, °)

C1—N11.333 (2)N4—O21.202 (3)
C1—C21.380 (3)O5—O66.641 (2)
C1—C41.500 (3)O5—H5A0.833 (16)
C2—C31.368 (3)O6—H6A0.799 (18)
C2—H20.9300O6—H6B0.843 (18)
C3—C2i1.368 (3)C12—O41.272 (10)
C3—H30.9300C12—N51.312 (5)
C4—O11.220 (2)C12—H12A0.9300
C4—N21.346 (2)C13—N51.466 (6)
C5—N31.263 (2)C13—H13A0.9600
C5—C61.461 (3)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C111.397 (3)C14—N51.408 (6)
C6—C71.385 (3)C14—H14A0.9600
C7—C81.369 (3)C14—H14B0.9600
C7—H70.9300C14—H14C0.9600
C8—C91.368 (3)C12'—O4'1.27 (2)
C8—H80.9300C12'—N5'1.394 (14)
C9—C101.375 (3)C12'—H12B0.9300
C9—H90.9300C13'—N5'1.414 (14)
C10—C111.384 (3)C13'—H13D0.9600
C10—N41.473 (3)C13'—H13E0.9600
C11—H110.9300C13'—H13F0.9600
N1—C1i1.333 (2)C14'—N5'1.440 (14)
N2—N31.376 (2)C14'—H14D0.9600
N2—O52.9082 (19)C14'—H14E0.9600
N2—H2A0.90 (2)C14'—H14F0.9600
N4—O31.207 (2)
N1—C1—C2122.48 (18)O2—N4—C10119.66 (18)
N1—C1—C4118.58 (15)N2—O5—H5A115 (2)
C2—C1—C4118.93 (17)O6—O5—H5A118 (2)
C3—C2—C1119.4 (2)O5—O6—H6B146 (3)
C3—C2—H2120.3H6A—O6—H6B114 (3)
C1—C2—H2120.3O4—C12—N5123.7 (5)
C2i—C3—C2118.4 (3)O4—C12—H12A118.2
C2i—C3—H3120.8N5—C12—H12A118.2
C2—C3—H3120.8N5—C13—H13A109.5
O1—C4—N2124.07 (17)N5—C13—H13B109.5
O1—C4—C1120.80 (16)H13A—C13—H13B109.5
N2—C4—C1115.13 (15)N5—C13—H13C109.5
N3—C5—C6122.41 (17)H13A—C13—H13C109.5
N3—C5—H5118.8H13B—C13—H13C109.5
C6—C5—H5118.8N5—C14—H14A109.5
C11—C6—C7118.41 (17)N5—C14—H14B109.5
C11—C6—C5122.13 (16)H14A—C14—H14B109.5
C7—C6—C5119.46 (17)N5—C14—H14C109.5
C8—C7—C6122.1 (2)H14A—C14—H14C109.5
C8—C7—H7118.9H14B—C14—H14C109.5
C6—C7—H7118.9C12—N5—C14121.2 (5)
C7—C8—C9120.19 (19)C12—N5—C13119.8 (4)
C7—C8—H8119.9C14—N5—C13117.6 (4)
C9—C8—H8119.9O4'—C12'—N5'109 (2)
C10—C9—C8118.04 (19)O4'—C12'—H12B125.7
C10—C9—H9121.0N5'—C12'—H12B125.7
C8—C9—H9121.0N5'—C13'—H13D109.5
C9—C10—C11123.34 (19)N5'—C13'—H13E109.5
C9—C10—N4118.96 (18)H13D—C13'—H13E109.5
C11—C10—N4117.70 (18)N5'—C13'—H13F109.5
C6—C11—C10117.86 (17)H13D—C13'—H13F109.5
C6—C11—H11121.1H13E—C13'—H13F109.5
C10—C11—H11121.1N5'—C14'—H14D109.5
C1i—N1—C1117.8 (2)N5'—C14'—H14E109.5
C4—N2—N3118.92 (15)H14D—C14'—H14E109.5
C4—N2—O5132.09 (12)N5'—C14'—H14F109.5
N3—N2—O5108.77 (11)H14D—C14'—H14F109.5
C4—N2—H2A124.1 (13)H14E—C14'—H14F109.5
N3—N2—H2A117.0 (13)C14'—N5'—C13'119.0 (15)
C5—N3—N2115.69 (15)C14'—N5'—C12'120.1 (16)
O3—N4—O2122.6 (2)C13'—N5'—C12'114.2 (14)
O3—N4—C10117.8 (2)
N1—C1—C2—C30.1 (3)C2—C1—N1—C1i−0.07 (15)
C4—C1—C2—C3179.59 (17)C4—C1—N1—C1i−179.52 (19)
C1—C2—C3—C2i−0.07 (14)O1—C4—N2—N30.8 (3)
N1—C1—C4—O1175.80 (17)C1—C4—N2—N3−179.30 (15)
C2—C1—C4—O1−3.7 (3)O1—C4—N2—O5−173.09 (14)
N1—C1—C4—N2−4.1 (2)C1—C4—N2—O56.8 (3)
C2—C1—C4—N2176.45 (18)C6—C5—N3—N2−179.94 (16)
N3—C5—C6—C110.1 (3)C4—N2—N3—C5−179.27 (17)
N3—C5—C6—C7−179.70 (17)O5—N2—N3—C5−4.04 (19)
C11—C6—C7—C80.1 (3)C9—C10—N4—O32.0 (3)
C5—C6—C7—C8179.9 (2)C11—C10—N4—O3−177.54 (19)
C6—C7—C8—C90.8 (4)C9—C10—N4—O2−177.7 (2)
C7—C8—C9—C10−0.4 (4)C11—C10—N4—O22.7 (3)
C8—C9—C10—C11−1.0 (3)C4—N2—O5—O6132.8 (3)
C8—C9—C10—N4179.4 (2)N3—N2—O5—O6−41.54 (13)
C7—C6—C11—C10−1.4 (3)O4—C12—N5—C14−12.8 (15)
C5—C6—C11—C10178.74 (17)O4—C12—N5—C13−179.1 (8)
C9—C10—C11—C61.9 (3)O4'—C12'—N5'—C14'170 (3)
N4—C10—C11—C6−178.49 (16)O4'—C12'—N5'—C13'−39 (4)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O6ii0.833 (16)1.864 (17)2.692 (2)173 (3)
C9—H9···O4iii0.932.603.438 (10)150
N2—H2A···O50.90 (2)2.03 (2)2.9082 (19)166.4 (19)
O6—H6A···O10.799 (18)2.05 (2)2.834 (2)167 (4)
O6—H6B···O40.843 (18)1.89 (2)2.728 (7)175 (4)
C5—H5···O50.932.483.2860 (18)145

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2593).

References

  • Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (6.01). Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Chen, X. Y., Zhan, S. Z., Hu, C. J., Meng, Q. J. & Liu, Y. J. (1997). J. Chem. Soc. Dalton Trans. pp. 245–250.
  • Chen, X. Y., Zhan, S. Z. & Meng, Q. J. (1996). Transition Met. Chem.21, 345–348.
  • Paolucci, G., Stelluto, S. & Sitran, S. (1985). Inorg. Chim. Acta, 110, 19–23.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography