PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o154.
Published online 2007 December 6. doi:  10.1107/S1600536807045023
PMCID: PMC2915222

2-(4,5-Dihydro-1,3-oxazol-2-yl)quinoline

Abstract

The title compound, C12H10N2O, is approximately planar. The angle between the quinoline and 4,5-dihydro­oxazole ring systems is 11.91 (12)°. The mol­ecules pack into a herringbone array with no significant π–π inter­actions. The dihydro­oxazole N and O atoms are disordered over two positions, with almost equal site occupancy factors.

Related literature

For related 2-substituted quinoline compounds, see: Mague et al. (1997 [triangle]); Yang et al. (2001 [triangle]); Qi et al. (2003 [triangle]); Xu et al. (2006 [triangle]). For the synthesis, see: Ishihara & Togo (2007 [triangle]). For related literature, see: Allen (2002 [triangle]); Cunico et al. (2006 [triangle]); Hartline et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o154-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O
  • M r = 198.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o154-efi1.jpg
  • a = 6.2240 (3) Å
  • b = 13.6649 (6) Å
  • c = 11.8186 (6) Å
  • β = 102.097 (3)°
  • V = 982.86 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 273 (2) K
  • 0.24 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle])T min = 0.705, T max = 1 (expected range = 0.697–0.989)
  • 9874 measured reflections
  • 2183 independent reflections
  • 1128 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.143
  • S = 1.00
  • 2183 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: APEX2/COSMO/BIS (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT and SADABS (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXTL (Bruker, 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536807045023/lh2491sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807045023/lh2491Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/PRONEX) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support. Fellowships from CNPq and CAPES are also acknowledged. The diffractomer was funded by a CT-INFRA grant from the Financiadora de Estudos e Projetos (FINEP), Brazil.

supplementary crystallographic information

Comment

Quinoline derivatives are known to possess a variety of biological properties such as antimalarial and antiviral activity (Cunico et al., 2006; Hartline et al., 2005). In addition, oxazoline-derived complexes of Pd(II) and other metals have attracted a great deal of attention due to their high efficiency in enantioselective catalysis. In this context, we were interested in detailed knowledge of the molecular structure of the above derivatives. In this communication we report the crystal structure of the title compound, 2-(4,5-dihydrooxazol-2-yl)quinoline. The analysis was focused on the planarity of the molecule. Both the quinoline and the 4,5-dihydrooxazole rings are planar, with r.m.s. deviations from planarity of 0.0136 Å for the first and 0.0176 ° for the last. The entire molecule is almost planar; the angle between the two rings is 11.91 (12) °. Quinoline and dihydrooxazole rings are essentially planar, with an average r.m.s. deviation from planarity of 0.06 (3) Å for 552 observations for the first and 0.05 (3) Å for 31 observations for the last in the Cambridge Structural Database [CSD, Version 5.28, update of May 2007; Allen, 2002)]. The molecules pack into a herringbone array with no significant π-π interactions.

Experimental

The title compound was synthesized from quinoline-2-carbaldehyde and aminoethanol according to the general procedure of Ishihara & Togo (2007). The crystal used for the data collection was obtained by recrystallization from hexane followed by slow evaporation at room temperature.

Refinement

All H atoms were refined using a riding model, with C—H = 0.97%A and Uiso(H) = 1.2Ueq(C) for the methylene C atoms and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the quinoline C atoms.

Figures

Fig. 1.
View of the asymmetric unit of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Crystal data

C12H10N2OF000 = 416
Mr = 198.22Dx = 1.34 Mg m3
Monoclinic, P2(1)/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1185 reflections
a = 6.2240 (3) Åθ = 6.9–40.4º
b = 13.6649 (6) ŵ = 0.09 mm1
c = 11.8186 (6) ÅT = 273 (2) K
β = 102.097 (3)ºBlock, colourless
V = 982.86 (8) Å30.24 × 0.21 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1128 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 296(2) Kθmax = 27.5º
phi and ω scansθmin = 3.4º
Absorption correction: multi-scan(SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data.h = −7→8
Tmin = 0.705, Tmax = 1k = −16→16
9874 measured reflectionsl = −15→15
2183 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.143  w = 1/[σ2(Fo2) + (0.069P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2183 reflectionsΔρmax = 0.14 e Å3
137 parametersΔρmin = −0.15 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.0592 (3)0.64386 (12)0.61057 (14)0.0526 (5)
C2−0.0108 (3)0.68102 (15)0.49740 (15)0.0664 (5)
H2−0.14140.65920.45080.080*
C30.1126 (3)0.74813 (14)0.45761 (15)0.0671 (6)
H30.06660.77380.38360.080*
C40.3119 (3)0.77950 (12)0.52818 (13)0.0531 (5)
C50.4498 (3)0.85086 (13)0.49471 (15)0.0644 (5)
H50.41140.87920.42170.077*
C60.6375 (4)0.87843 (14)0.56788 (18)0.0701 (6)
H60.72720.92560.54480.084*
C70.6978 (3)0.83631 (15)0.67849 (17)0.0729 (6)
H70.82670.85610.72830.087*
C80.5700 (3)0.76724 (14)0.71306 (15)0.0644 (5)
H80.61280.73920.78600.077*
C90.3723 (3)0.73727 (12)0.63946 (13)0.0514 (5)
C11−0.0822 (3)0.57463 (13)0.65666 (15)0.0591 (5)
C12−0.2299 (4)0.48788 (16)0.77775 (19)0.0812 (7)
H12A−0.31460.51890.82800.097*
H12B−0.17880.42470.80990.097*
C13−0.3652 (4)0.47695 (17)0.65699 (18)0.0815 (7)
H13A−0.36570.40960.63120.098*
H13B−0.51560.49770.65330.098*
N10.2441 (2)0.67018 (10)0.67998 (11)0.0538 (4)
N2−0.2574 (3)0.54003 (12)0.58733 (13)0.0854 (7)0.473 (17)
O1−0.0448 (2)0.54973 (11)0.76424 (12)0.0751 (7)0.473 (17)
O1A−0.2574 (3)0.54003 (12)0.58733 (13)0.0854 (7)0.527 (17)
N2A−0.0448 (2)0.54973 (11)0.76424 (12)0.0751 (7)0.527 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0561 (11)0.0528 (10)0.0477 (10)0.0063 (9)0.0085 (9)−0.0031 (8)
C20.0650 (13)0.0777 (13)0.0509 (11)−0.0018 (11)−0.0007 (9)0.0018 (9)
C30.0771 (14)0.0744 (14)0.0450 (10)0.0102 (11)0.0019 (10)0.0063 (8)
C40.0640 (12)0.0516 (10)0.0448 (9)0.0099 (9)0.0141 (9)0.0004 (7)
C50.0796 (14)0.0627 (12)0.0534 (11)0.0080 (11)0.0194 (11)0.0074 (9)
C60.0747 (14)0.0647 (13)0.0751 (13)−0.0037 (11)0.0253 (11)0.0090 (10)
C70.0706 (14)0.0771 (14)0.0676 (13)−0.0116 (11)0.0071 (11)0.0052 (10)
C80.0699 (14)0.0682 (13)0.0515 (10)−0.0032 (10)0.0047 (10)0.0087 (8)
C90.0583 (11)0.0506 (10)0.0439 (9)0.0083 (9)0.0075 (8)−0.0007 (7)
C110.0600 (12)0.0562 (11)0.0604 (12)0.0043 (9)0.0112 (10)−0.0050 (9)
C120.0734 (15)0.0889 (15)0.0850 (15)−0.0119 (12)0.0249 (12)0.0050 (11)
C130.0698 (14)0.0826 (15)0.0923 (16)−0.0137 (11)0.0178 (13)0.0012 (11)
N10.0580 (9)0.0536 (9)0.0481 (8)0.0009 (7)0.0075 (7)0.0019 (6)
N20.0765 (12)0.1034 (13)0.0690 (11)−0.0272 (9)−0.0013 (9)0.0046 (8)
O10.0772 (12)0.0848 (12)0.0607 (10)−0.0168 (8)0.0083 (8)0.0091 (7)
O1A0.0765 (12)0.1034 (13)0.0690 (11)−0.0272 (9)−0.0013 (9)0.0046 (8)
N2A0.0772 (12)0.0848 (12)0.0607 (10)−0.0168 (8)0.0083 (8)0.0091 (7)

Geometric parameters (Å, °)

C1—N11.315 (2)C7—H70.9300
C1—C21.412 (2)C8—C91.411 (2)
C1—C111.472 (3)C8—H80.9300
C2—C31.343 (3)C9—N11.366 (2)
C2—H20.9300C11—O11.289 (2)
C3—C41.409 (2)C11—N21.307 (2)
C3—H30.9300C12—O11.464 (2)
C4—C51.409 (2)C12—C131.505 (3)
C4—C91.413 (2)C12—H12A0.9700
C5—C61.353 (2)C12—H12B0.9700
C5—H50.9300C13—N21.450 (2)
C6—C71.405 (2)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C81.352 (3)
N1—C1—C2123.27 (18)C9—C8—H8119.7
N1—C1—C11117.23 (15)N1—C9—C8118.48 (15)
C2—C1—C11119.46 (16)N1—C9—C4122.63 (16)
C3—C2—C1119.45 (17)C8—C9—C4118.87 (18)
C3—C2—H2120.3O1—C11—N2118.51 (18)
C1—C2—H2120.3O1—C11—C1122.40 (16)
C2—C3—C4119.85 (16)N2—C11—C1119.03 (16)
C2—C3—H3120.1O1—C12—C13104.53 (16)
C4—C3—H3120.1O1—C12—H12A110.8
C3—C4—C5123.84 (16)C13—C12—H12A110.8
C3—C4—C9117.14 (18)O1—C12—H12B110.8
C5—C4—C9119.01 (17)C13—C12—H12B110.8
C6—C5—C4120.54 (17)H12A—C12—H12B108.9
C6—C5—H5119.7N2—C13—C12104.22 (15)
C4—C5—H5119.7N2—C13—H13A110.9
C5—C6—C7120.47 (19)C12—C13—H13A110.9
C5—C6—H6119.8N2—C13—H13B110.9
C7—C6—H6119.8C12—C13—H13B110.9
C8—C7—C6120.50 (18)H13A—C13—H13B108.9
C8—C7—H7119.7C1—N1—C9117.63 (14)
C6—C7—H7119.7C11—N2—C13106.47 (15)
C7—C8—C9120.60 (17)C11—O1—C12106.02 (16)
C7—C8—H8119.7
N1—C1—C2—C3−1.4 (3)N1—C1—C11—O18.9 (3)
C11—C1—C2—C3176.45 (16)C2—C1—C11—O1−169.11 (17)
C1—C2—C3—C41.1 (3)N1—C1—C11—N2−173.99 (16)
C2—C3—C4—C5−178.70 (17)C2—C1—C11—N28.0 (3)
C2—C3—C4—C90.2 (3)O1—C12—C13—N2−4.9 (2)
C3—C4—C5—C6179.00 (17)C2—C1—N1—C90.3 (2)
C9—C4—C5—C60.2 (3)C11—C1—N1—C9−177.55 (14)
C4—C5—C6—C70.0 (3)C8—C9—N1—C1179.31 (15)
C5—C6—C7—C80.4 (3)C4—C9—N1—C11.0 (2)
C6—C7—C8—C9−0.9 (3)O1—C11—N2—C13−1.2 (2)
C7—C8—C9—N1−177.34 (17)C1—C11—N2—C13−178.42 (15)
C7—C8—C9—C41.1 (3)C12—C13—N2—C113.8 (2)
C3—C4—C9—N1−1.3 (2)N2—C11—O1—C12−2.2 (2)
C5—C4—C9—N1177.67 (14)C1—C11—O1—C12174.98 (16)
C3—C4—C9—C8−179.57 (15)C13—C12—O1—C114.4 (2)
C5—C4—C9—C8−0.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2491).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact Gbr, Bonn, Germany.
  • Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett.16, 649–653. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res.65, 97–105. [PubMed]
  • Ishihara, M. & Togo, H. (2007). Tetrahedron, 63, 1474–1480.
  • Mague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973–979.
  • Qi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o104–o105.
  • Xu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. & Zhu, D.-R. (2006). Acta Cryst. E62, o5234–o5235.
  • Yang, Q.-Y., Zhou, Z.-Y. & Qi, J.-Y. (2001). Acta Cryst. E57, o971–o972.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography