PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o150.
Published online 2007 December 6. doi:  10.1107/S1600536807063611
PMCID: PMC2915218

6-Chloro-N′-(2-hydr­oxy-1-naphthyl­methyl­ene)nicotinohydrazide

Abstract

The title compound, C17H12ClN3O2, was synthesized by the Schiff base condensation reaction of 2-hydr­oxy-1-naphthaldehyde with 6-chloro­nicotinic acid hydrazide in a methanol solution. The mol­ecule displays a trans configuration with respect to the C=N and C—N bonds. The dihedral angle between the naphthyl ring system and the pyridine ring is 7.6 (4)°. There is an intra­molecular O—H(...)N hydrogen bond. The crystal structure is stabilized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds, forming chains running along the b axis.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Chen et al. (1997 [triangle]); Fan et al. (2007 [triangle]); Kim et al. (2005 [triangle]); Nimitsiriwat et al. (2004 [triangle]); Ren et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o150-scheme1.jpg

Experimental

Crystal data

  • C17H12ClN3O2
  • M r = 325.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o150-efi1.jpg
  • a = 4.7450 (9) Å
  • b = 6.0420 (12) Å
  • c = 25.752 (5) Å
  • β = 91.93 (3)°
  • V = 737.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 293 (2) K
  • 0.23 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.937, T max = 0.940
  • 5692 measured reflections
  • 2980 independent reflections
  • 1948 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.110
  • S = 0.99
  • 2980 reflections
  • 212 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.18 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1447 Friedel pairs
  • Flack parameter: 0.11 (10)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063611/bv2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063611/bv2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Third Affiliated Hospital of Suzhou University is acknowledged.

supplementary crystallographic information

Comment

Schiff base compounds have been widely investigated over a century (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have pharmacological and antibacterial activity (Chen et al., 1997; Ren et al., 2002). In this paper, the crystal structure of a new Schiff base compound derived from the condensation reaction of 2-hydroxy-1-naphthaldehyde with 6-chloronicotinic acid hydrazide is reported.

The Schiff base molecule of the compound displays a trans configuration with respect to the C?N and C—N bonds (Fig. 1). The dihedral angle between the C8—C17 naphthyl ring and the C1—C5/N1 pyridine ring is 7.6 (4)°. All the bond lengths are within normal ranges (Allen et al., 1987). There is an intramolecular O–H···N hydrogen bond in the molecule (Table 1). The crystal structure is stabilized by intermolecular N–H···O and C–H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Experimental

2-Hydroxy-1-naphthaldehyde (0.1 mmol, 17.2 mg) and 6-chloronicotinic acid hydrazide (0.1 mmol, 17.1 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature to give a clear yellow solution. Crystals of the title compound were formed by gradual evaporation of the solvent for two days at room temperature.

Refinement

Atom H2B was located from a difference Fourier map and refined isotropically, with N–H distance restrained to 0.90 (1) Å. Other H atoms were constrained to ideal geometries, with C–H = 0.93 Å, O–H = 0.82 Å, and with Uiso(H) set to 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I) at the 30% probability level.
Fig. 2.
Molecular packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C17H12ClN3O2F000 = 336
Mr = 325.75Dx = 1.466 Mg m3
Monoclinic, PcMo Kα radiation λ = 0.71073 Å
a = 4.7450 (9) ÅCell parameters from 790 reflections
b = 6.0420 (12) Åθ = 2.4–24.3º
c = 25.752 (5) ŵ = 0.27 mm1
β = 91.93 (3)ºT = 293 (2) K
V = 737.9 (2) Å3Block, yellow
Z = 20.23 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer2980 independent reflections
Radiation source: fine-focus sealed tube1948 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 293(2) Kθmax = 26.5º
ω scanθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −5→5
Tmin = 0.937, Tmax = 0.940k = −7→7
5692 measured reflectionsl = −32→32

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057  w = 1/[σ2(Fo2) + (0.0375P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.15 e Å3
2980 reflectionsΔρmin = −0.18 e Å3
212 parametersExtinction correction: none
3 restraintsAbsolute structure: Flack (1983), 1447 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.11 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.0611 (3)1.5001 (2)−0.11216 (6)0.0788 (4)
O1−0.4774 (5)0.7030 (4)0.02688 (11)0.0494 (7)
O2−0.3951 (6)0.1598 (5)0.10628 (11)0.0515 (7)
H2−0.35670.27880.09290.077*
N1−0.2165 (8)1.1504 (6)−0.08492 (13)0.0577 (10)
N2−0.0394 (6)0.6927 (6)0.06381 (12)0.0380 (8)
N3−0.1179 (6)0.5186 (5)0.09455 (13)0.0416 (8)
C1−0.0145 (9)1.2884 (7)−0.06934 (16)0.0484 (11)
C20.1344 (8)1.2758 (6)−0.02279 (15)0.0472 (10)
H2A0.27411.3785−0.01410.057*
C30.0704 (8)1.1058 (6)0.01076 (16)0.0390 (9)
H30.16771.09130.04250.047*
C4−0.1420 (8)0.9566 (6)−0.00370 (16)0.0375 (10)
C5−0.2731 (9)0.9895 (7)−0.05108 (17)0.0525 (12)
H5−0.41550.8905−0.06080.063*
C6−0.2328 (8)0.7734 (6)0.02998 (14)0.0367 (9)
C70.0501 (10)0.4617 (6)0.13256 (18)0.0401 (9)
H70.21480.54170.13910.048*
C8−0.0149 (7)0.2745 (6)0.16510 (15)0.0376 (9)
C9−0.2276 (8)0.1283 (7)0.14941 (16)0.0432 (10)
C10−0.2774 (9)−0.0650 (7)0.17726 (19)0.0555 (13)
H10−0.4147−0.16430.16540.067*
C11−0.1272 (9)−0.1079 (7)0.22124 (18)0.0569 (13)
H11−0.1638−0.23770.23920.068*
C120.0845 (9)0.0363 (7)0.24135 (17)0.0485 (12)
C130.2286 (11)−0.0050 (10)0.28798 (17)0.0631 (15)
H130.1877−0.13230.30660.076*
C140.4314 (10)0.1389 (9)0.30741 (18)0.0651 (14)
H140.53190.10620.33810.078*
C150.4840 (9)0.3345 (8)0.28043 (16)0.0596 (13)
H150.61640.43480.29380.072*
C160.3413 (8)0.3798 (7)0.23432 (15)0.0460 (10)
H160.37890.51060.21680.055*
C170.1391 (8)0.2315 (7)0.21308 (15)0.0384 (10)
H2B0.142 (3)0.733 (7)0.0613 (17)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1123 (10)0.0589 (7)0.0659 (7)−0.0054 (7)0.0137 (6)0.0212 (6)
O10.0287 (14)0.0529 (18)0.0662 (19)−0.0089 (14)−0.0033 (13)0.0008 (15)
O20.0416 (15)0.057 (2)0.0557 (18)−0.0132 (14)0.0021 (14)−0.0051 (15)
N10.073 (3)0.055 (3)0.044 (2)−0.001 (2)−0.005 (2)0.0076 (19)
N20.0300 (17)0.0427 (19)0.0414 (18)−0.0028 (15)0.0004 (16)0.0072 (16)
N30.040 (2)0.041 (2)0.0444 (19)−0.0037 (17)0.0083 (16)0.0022 (17)
C10.059 (3)0.043 (3)0.044 (3)−0.002 (2)0.010 (2)0.005 (2)
C20.046 (2)0.042 (3)0.053 (3)−0.006 (2)0.004 (2)−0.005 (2)
C30.037 (2)0.040 (2)0.040 (2)−0.004 (2)−0.0024 (18)0.000 (2)
C40.036 (2)0.041 (3)0.036 (2)0.0013 (19)0.0026 (18)−0.0020 (19)
C50.048 (3)0.053 (3)0.056 (3)−0.007 (2)−0.001 (2)−0.011 (2)
C60.033 (2)0.039 (2)0.038 (2)−0.0016 (19)0.0035 (18)−0.0067 (18)
C70.035 (2)0.041 (2)0.045 (2)0.000 (2)0.0052 (17)0.003 (2)
C80.033 (2)0.035 (2)0.045 (2)−0.0019 (18)0.0092 (18)−0.0023 (18)
C90.038 (2)0.045 (3)0.047 (3)0.002 (2)0.006 (2)−0.002 (2)
C100.055 (3)0.042 (3)0.071 (3)−0.014 (2)0.019 (3)−0.010 (3)
C110.063 (3)0.041 (3)0.068 (3)−0.007 (2)0.016 (3)0.007 (2)
C120.056 (3)0.037 (3)0.053 (3)0.007 (2)0.016 (2)0.006 (2)
C130.076 (4)0.071 (4)0.043 (3)0.016 (3)0.014 (3)0.022 (3)
C140.068 (3)0.088 (4)0.040 (3)0.028 (3)0.006 (2)0.010 (3)
C150.066 (3)0.065 (3)0.047 (3)0.005 (3)−0.002 (2)0.002 (2)
C160.043 (3)0.046 (3)0.049 (3)−0.003 (2)0.002 (2)0.003 (2)
C170.038 (2)0.039 (3)0.038 (2)0.0033 (19)0.0086 (19)−0.0006 (19)

Geometric parameters (Å, °)

Cl1—C11.734 (4)C7—H70.9300
O1—C61.236 (4)C8—C91.391 (5)
O2—C91.357 (4)C8—C171.438 (5)
O2—H20.8200C9—C101.395 (6)
N1—C11.323 (5)C10—C111.343 (6)
N1—C51.339 (5)C10—H100.9300
N2—C61.336 (4)C11—C121.415 (6)
N2—N31.375 (4)C11—H110.9300
N2—H2B0.900 (10)C12—C131.385 (6)
N3—C71.288 (5)C12—C171.414 (5)
C1—C21.373 (5)C13—C141.378 (7)
C2—C31.382 (5)C13—H130.9300
C2—H2A0.9300C14—C151.398 (6)
C3—C41.393 (5)C14—H140.9300
C3—H30.9300C15—C161.374 (5)
C4—C51.365 (5)C15—H150.9300
C4—C61.479 (5)C16—C171.410 (5)
C5—H50.9300C16—H160.9300
C7—C81.447 (5)
C9—O2—H2109.5C17—C8—C7121.8 (4)
C1—N1—C5114.8 (4)O2—C9—C8123.2 (4)
C6—N2—N3117.5 (3)O2—C9—C10115.7 (4)
C6—N2—H2B120 (3)C8—C9—C10121.1 (4)
N3—N2—H2B122 (3)C11—C10—C9120.1 (4)
C7—N3—N2118.0 (3)C11—C10—H10120.0
N1—C1—C2125.2 (4)C9—C10—H10120.0
N1—C1—Cl1115.8 (3)C10—C11—C12122.7 (4)
C2—C1—Cl1119.0 (3)C10—C11—H11118.7
C1—C2—C3118.0 (4)C12—C11—H11118.7
C1—C2—H2A121.0C13—C12—C17120.2 (4)
C3—C2—H2A121.0C13—C12—C11122.0 (4)
C2—C3—C4119.0 (4)C17—C12—C11117.7 (4)
C2—C3—H3120.5C14—C13—C12121.3 (5)
C4—C3—H3120.5C14—C13—H13119.3
C5—C4—C3116.7 (4)C12—C13—H13119.3
C5—C4—C6120.0 (4)C13—C14—C15119.1 (5)
C3—C4—C6123.3 (4)C13—C14—H14120.4
N1—C5—C4126.3 (4)C15—C14—H14120.4
N1—C5—H5116.9C16—C15—C14120.4 (5)
C4—C5—H5116.9C16—C15—H15119.8
O1—C6—N2122.6 (3)C14—C15—H15119.8
O1—C6—C4120.7 (4)C15—C16—C17121.2 (4)
N2—C6—C4116.6 (3)C15—C16—H16119.4
N3—C7—C8120.7 (4)C17—C16—H16119.4
N3—C7—H7119.7C16—C17—C12117.7 (4)
C8—C7—H7119.7C16—C17—C8122.6 (3)
C9—C8—C17118.5 (3)C12—C17—C8119.8 (4)
C9—C8—C7119.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.842.559 (4)146
N2—H2B···O1i0.900 (10)2.05 (2)2.862 (4)150 (4)
C2—H2A···O1ii0.932.503.396 (4)161

Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2083).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2002). SAINT (Version 5.62) and SMART (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231. [PubMed]
  • Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem.33, 535–538.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc.127, 16776–16777. [PubMed]
  • Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc.126, 13598–13599. [PubMed]
  • Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem.45, 410–419. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography