PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o147.
Published online 2007 December 6. doi:  10.1107/S1600536807063192
PMCID: PMC2915215

3-(1,3-Benzodioxol-5-yl)-1-phenyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine

Abstract

In the title compound, C25H19NO3, the oxazine ring displays a half-chair conformation. The fused benzene ring is nearly parallel to the naphthyl ring system, the dihedral angle between this benzene ring and the naphthyl system being 8.52 (11)°. The imino group is not involved in hydrogen bonding in the crystal structure.

Related literature

For general background, see: Katayama & Oshiyama (1997 [triangle]); Mahajan et al. (1991 [triangle]); Mishra et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o147-scheme1.jpg

Experimental

Crystal data

  • C25H19NO3
  • M r = 381.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o147-efi1.jpg
  • a = 9.180 (3) Å
  • b = 5.7585 (18) Å
  • c = 17.320 (5) Å
  • β = 97.707 (4)°
  • V = 907.3 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 291 (2) K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.97, T max = 0.98
  • 5964 measured reflections
  • 2412 independent reflections
  • 1824 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.134
  • S = 1.18
  • 2412 reflections
  • 265 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063192/xu2388sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063192/xu2388Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their deep appreciation to the Startup Fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry, China (No.2005001).

supplementary crystallographic information

Comment

The oxazine derivatives display various applications and widespresd potential biological and pharmacological activities such as antimicrobial (Mahajan et al., 1991), antitumor (Katayama & Oshiyama, 1997) and antihistaminic (Mishra et al., 1998). In view of these important properties, we reported the crystal strucutre of the tilte compound.

The oxazine ring in the molecular is not planar. The 1,3-benzodioxole ring makes the dihedral angles of 68.24 (11)° and 8.52 (11)° with the benzene ring and the naphthyl ring, respectively, while the plane O1/C1/C10/C11 is co-planar with the naphthalene ring with the dihedral angle 1.43 (11)°. The dihedral angle between the benzene ring and the naphthalene ring is 71.48 (16)°.

Experimental

1-(Amino(phenyl)methyl)naphthalen-2-ol (1 mmol, 0.249 g) was dissolved in anhydrous methanol, the mixture was stirred for several minitutes, 1,3-benzodioxole-5-carbaldehyde (1 mmol, 0.150 g) in methanol (6 ml) was added dropwise and the mixture was stirred at room temperature for 2 h. The product was isolated and recrystallized in dichloromethane. Colorless single crystals of (I) was obtained after 4 d.

Refinement

Imino H atom was located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(N). Other H atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H)=1.2Ueq(C). In absence of significant anomalous scattering, Friedel pairs were merged.

Figures

Fig. 1.
The ORTEP plot of (I). Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C25H19NO3F000 = 400
Mr = 381.41Dx = 1.396 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 912 reflections
a = 9.180 (3) Åθ = 2.1–25.1º
b = 5.7585 (18) ŵ = 0.09 mm1
c = 17.320 (5) ÅT = 291 (2) K
β = 97.707 (4)ºBlock, colorless
V = 907.3 (5) Å30.30 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer2412 independent reflections
Radiation source: sealed tube1824 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 291(2) Kθmax = 28.0º
[var phi] and ω scansθmin = 1.2º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −12→12
Tmin = 0.97, Tmax = 0.98k = −7→7
5964 measured reflectionsl = −15→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134  w = 1/[σ2(Fo2) + (0.0517P)2 + 0.1645P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
2412 reflectionsΔρmax = 0.21 e Å3
265 parametersΔρmin = −0.20 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4757 (4)1.2105 (7)0.2026 (2)0.0336 (8)
C20.5763 (4)1.3803 (7)0.1817 (2)0.0357 (9)
H20.54491.49020.14380.043*
C30.7154 (4)1.3826 (8)0.2163 (2)0.0394 (9)
H30.77941.49580.20260.047*
C40.7663 (4)1.2181 (7)0.2729 (2)0.0333 (8)
C50.9118 (4)1.2228 (7)0.3104 (2)0.0366 (9)
H50.97191.34570.29990.044*
C60.9709 (5)1.0510 (8)0.3631 (2)0.0407 (10)
H61.06641.06030.38880.049*
C70.8740 (4)0.8566 (8)0.3752 (2)0.0402 (9)
H70.90910.72950.40520.048*
C80.7357 (4)0.8655 (8)0.3425 (2)0.0386 (9)
H80.67350.75030.35680.046*
C90.6719 (4)1.0330 (7)0.2877 (2)0.0321 (8)
C100.5191 (4)1.0343 (8)0.2527 (2)0.0376 (9)
C110.4128 (4)0.8432 (8)0.2724 (2)0.0400 (9)
H110.46130.69360.26700.048*
C120.3653 (4)0.8494 (7)0.3526 (2)0.0362 (8)
C130.4046 (4)1.0273 (7)0.4006 (2)0.0328 (8)
H130.45691.15310.38490.039*
C140.3628 (4)1.0156 (8)0.4770 (2)0.0421 (10)
H140.38931.13630.51180.051*
C150.2837 (5)0.8292 (9)0.5011 (3)0.0461 (10)
H150.25810.82230.55120.055*
C160.2441 (4)0.6531 (8)0.4472 (2)0.0395 (9)
H160.18810.52930.46130.047*
C170.2874 (4)0.6570 (9)0.3703 (3)0.0441 (10)
H170.26420.53690.33490.053*
C180.2306 (4)1.0885 (7)0.2003 (2)0.0378 (9)
H180.21621.14990.25150.045*
C190.0807 (5)1.1079 (8)0.1429 (2)0.0411 (9)
C200.0568 (4)1.2985 (8)0.0972 (2)0.0368 (9)
H200.13111.40840.09730.044*
C21−0.0776 (4)1.3335 (8)0.0497 (2)0.0360 (8)
H21−0.09991.47010.02190.043*
C22−0.1737 (4)1.1502 (7)0.0475 (2)0.0326 (8)
C23−0.1516 (5)0.9640 (8)0.0947 (2)0.0427 (10)
C24−0.0182 (4)0.9259 (8)0.1459 (2)0.0360 (9)
H240.00020.79550.17730.043*
C25−0.3700 (5)0.9157 (8)0.0285 (2)0.0459 (11)
H25A−0.46220.93720.04910.055*
H25B−0.38750.8163−0.01700.055*
N10.2826 (4)0.8559 (7)0.2088 (2)0.0388 (8)
H10.246 (5)0.740 (9)0.182 (3)0.047*
O10.3362 (3)1.2333 (5)0.16696 (15)0.0380 (7)
O2−0.3139 (3)1.1315 (6)0.00830 (16)0.0414 (7)
O3−0.2657 (3)0.8142 (5)0.08500 (15)0.0392 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.039 (2)0.030 (2)0.0311 (18)0.0063 (17)0.0014 (15)−0.0124 (15)
C20.0389 (19)0.037 (2)0.0284 (16)−0.0056 (18)−0.0063 (14)−0.0042 (17)
C30.0299 (17)0.043 (2)0.047 (2)0.0083 (18)0.0127 (16)0.0024 (19)
C40.0272 (17)0.034 (2)0.0397 (19)0.0003 (16)0.0071 (15)−0.0007 (16)
C50.045 (2)0.038 (2)0.0265 (17)−0.0072 (18)0.0017 (16)−0.0114 (16)
C60.040 (2)0.041 (2)0.038 (2)0.0099 (19)−0.0060 (17)−0.0057 (18)
C70.0345 (19)0.041 (2)0.044 (2)0.0158 (19)0.0009 (16)0.0089 (19)
C80.0339 (18)0.043 (2)0.041 (2)0.0136 (18)0.0123 (16)0.0105 (19)
C90.0268 (17)0.033 (2)0.0381 (18)0.0110 (16)0.0101 (14)−0.0079 (17)
C100.0371 (19)0.043 (2)0.0286 (17)−0.0135 (19)−0.0113 (15)−0.0011 (17)
C110.0356 (18)0.040 (2)0.044 (2)−0.001 (2)0.0023 (16)−0.0123 (19)
C120.0419 (19)0.0265 (19)0.0380 (19)0.0106 (17)−0.0025 (16)−0.0006 (17)
C130.0241 (16)0.034 (2)0.0412 (19)0.0112 (15)0.0079 (14)−0.0127 (16)
C140.046 (2)0.045 (2)0.0308 (18)0.007 (2)−0.0139 (16)0.0014 (19)
C150.044 (2)0.048 (3)0.044 (2)0.011 (2)−0.0022 (18)0.001 (2)
C160.0318 (18)0.042 (2)0.044 (2)0.0108 (18)0.0020 (16)0.012 (2)
C170.037 (2)0.044 (2)0.052 (2)0.0013 (19)0.0081 (17)0.007 (2)
C180.045 (2)0.035 (2)0.0345 (18)0.0014 (19)0.0093 (16)0.0072 (17)
C190.046 (2)0.035 (2)0.040 (2)0.0108 (19)−0.0046 (17)−0.0032 (18)
C200.0304 (17)0.045 (2)0.0375 (19)−0.0078 (18)0.0136 (15)0.0042 (19)
C210.0363 (18)0.037 (2)0.0359 (18)−0.0073 (18)0.0113 (15)0.0153 (17)
C220.0390 (19)0.0253 (18)0.0303 (16)0.0039 (17)−0.0076 (14)−0.0012 (16)
C230.047 (2)0.036 (2)0.042 (2)−0.0057 (19)−0.0068 (18)0.0018 (18)
C240.0367 (19)0.039 (2)0.0338 (18)0.0135 (17)0.0096 (15)−0.0067 (17)
C250.039 (2)0.049 (3)0.045 (2)−0.007 (2)−0.0106 (18)−0.001 (2)
N10.0329 (16)0.0346 (19)0.0460 (18)−0.0174 (15)−0.0059 (13)0.0043 (16)
O10.0395 (14)0.0368 (15)0.0384 (14)0.0117 (13)0.0078 (11)0.0163 (13)
O20.0378 (14)0.0425 (17)0.0416 (14)−0.0021 (14)−0.0035 (12)0.0058 (14)
O30.0398 (14)0.0368 (16)0.0396 (13)0.0003 (13)−0.0003 (11)0.0185 (13)

Geometric parameters (Å, °)

C1—O11.351 (4)C14—H140.9300
C1—C101.359 (6)C15—C161.393 (7)
C1—C21.425 (6)C15—H150.9300
C2—C31.336 (5)C16—C171.440 (6)
C2—H20.9300C16—H160.9300
C3—C41.398 (6)C17—H170.9300
C3—H30.9300C18—N11.424 (6)
C4—C51.405 (5)C18—O11.456 (5)
C4—C91.419 (5)C18—C191.589 (6)
C5—C61.405 (6)C18—H180.9800
C5—H50.9300C19—C201.354 (6)
C6—C71.462 (6)C19—C241.392 (6)
C6—H60.9300C20—C211.403 (5)
C7—C81.320 (5)C20—H200.9300
C7—H70.9300C21—C221.373 (5)
C8—C91.423 (5)C21—H210.9300
C8—H80.9300C22—C231.347 (6)
C9—C101.452 (5)C22—O21.376 (4)
C10—C111.539 (6)C23—O31.350 (5)
C11—C121.511 (5)C23—C241.429 (5)
C11—N11.514 (5)C24—H240.9300
C11—H110.9800C25—O31.401 (5)
C12—C131.339 (5)C25—O21.408 (6)
C12—C171.375 (6)C25—H25A0.9700
C13—C141.428 (5)C25—H25B0.9700
C13—H130.9300N1—H10.86 (5)
C14—C151.391 (7)
O1—C1—C10122.9 (4)C14—C15—C16117.4 (4)
O1—C1—C2115.1 (3)C14—C15—H15121.3
C10—C1—C2122.0 (3)C16—C15—H15121.3
C3—C2—C1120.4 (4)C15—C16—C17121.9 (4)
C3—C2—H2119.8C15—C16—H16119.0
C1—C2—H2119.8C17—C16—H16119.0
C2—C3—C4121.2 (4)C12—C17—C16115.8 (4)
C2—C3—H3119.4C12—C17—H17122.1
C4—C3—H3119.4C16—C17—H17122.1
C3—C4—C5121.3 (4)N1—C18—O1110.3 (3)
C3—C4—C9118.7 (3)N1—C18—C19112.4 (3)
C5—C4—C9119.8 (4)O1—C18—C19106.2 (3)
C4—C5—C6123.2 (4)N1—C18—H18109.3
C4—C5—H5118.4O1—C18—H18109.3
C6—C5—H5118.4C19—C18—H18109.3
C5—C6—C7116.3 (3)C20—C19—C24125.2 (4)
C5—C6—H6121.9C20—C19—C18118.8 (4)
C7—C6—H6121.9C24—C19—C18116.0 (4)
C8—C7—C6118.5 (4)C19—C20—C21121.3 (4)
C8—C7—H7120.7C19—C20—H20119.3
C6—C7—H7120.7C21—C20—H20119.3
C7—C8—C9126.8 (4)C22—C21—C20114.6 (4)
C7—C8—H8116.6C22—C21—H21122.7
C9—C8—H8116.6C20—C21—H21122.7
C4—C9—C8115.0 (3)C23—C22—C21123.5 (3)
C4—C9—C10120.0 (3)C23—C22—O2107.0 (3)
C8—C9—C10124.8 (4)C21—C22—O2128.9 (3)
C1—C10—C9117.0 (4)C22—C23—O3112.5 (3)
C1—C10—C11122.3 (3)C22—C23—C24123.0 (4)
C9—C10—C11120.6 (3)O3—C23—C24124.4 (4)
C12—C11—N1111.8 (3)C19—C24—C23111.7 (4)
C12—C11—C10117.1 (3)C19—C24—H24124.1
N1—C11—C10105.4 (3)C23—C24—H24124.1
C12—C11—H11107.3O3—C25—O2107.7 (3)
N1—C11—H11107.3O3—C25—H25A110.2
C10—C11—H11107.3O2—C25—H25A110.2
C13—C12—C17125.6 (4)O3—C25—H25B110.2
C13—C12—C11120.2 (4)O2—C25—H25B110.2
C17—C12—C11114.2 (4)H25A—C25—H25B108.5
C12—C13—C14117.2 (4)C18—N1—C11110.0 (3)
C12—C13—H13121.4C18—N1—H1125 (3)
C14—C13—H13121.4C11—N1—H1125 (3)
C15—C14—C13122.0 (4)C1—O1—C18113.8 (3)
C15—C14—H14119.0C22—O2—C25107.2 (3)
C13—C14—H14119.0C23—O3—C25105.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2388).

References

  • Bruker (2000). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Katayama, H. & Oshiyama, T. (1997). Can. J. Chem.75, 913–919.
  • Mahajan, R. N., Havaldar, F. H. & Femandes, P. S. (1991). J. Indian Chem. Soc.68, 245–249.
  • Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography