PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o144.
Published online 2007 December 6. doi:  10.1107/S1600536807063453
PMCID: PMC2915213

Diethyl [hydr­oxy(2-nitro­phen­yl)­meth­yl]phospho­nate

Abstract

In the title mol­ecule, C11H16NO6P, the nitro group is twisted out of the mean plane of the benzene ring at 29.91 (3)°. The two ethyl groups are disordered between two orientations in the ratios 0.784 (7)/0.216 (7) and 0.733 (6)/0.267 (6). Inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Allen et al. (1978 [triangle]); Hirschmann et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o144-scheme1.jpg

Experimental

Crystal data

  • C11H16NO6P
  • M r = 289.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o144-efi1.jpg
  • a = 7.5659 (13) Å
  • b = 8.3844 (15) Å
  • c = 12.557 (2) Å
  • α = 73.356 (3)°
  • β = 87.391 (3)°
  • γ = 64.432 (3)°
  • V = 685.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 291 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: none
  • 6168 measured reflections
  • 2800 independent reflections
  • 2381 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.157
  • S = 1.05
  • 2800 reflections
  • 193 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063453/cv2361sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063453/cv2361Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Xiang-Gao Meng for the X-ray data collection.

supplementary crystallographic information

Comment

Phosphonates, especially enantiomerically pure forms, are particularly important in connection with their remarkable biological activities. They have been used as enzyme inhibitors, antibacterial agents, anti-HIV agents, botryticides, and haptens for catalytic antibodies (Allen et al., 1978; Hirschmann et al., 1994). In this regard, the preparation of various optically active phosphonates with a diversity of structures is highly desirable for drug discovery and medicinal chemistry. The title compound (I) was obtained in the reaction of diphenylphosphite with an aromatic aldehyde in the presence of triethylamine.

In (I) (Fig. 1), the nitro group is twisted out of the mean plane of benzene ring at 29.91 (3)°. In the crystal (Fig. 2), intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2).

Experimental

To a solution of 2-nitrobenzylaldehyde(1 mmol) in tetrahydrofuran(0.6 ml) was added diphenyl phosphite(1 mmol) at 0°C. After 15 minutes, triethylamine (0.1 ml) was added, and the reaction mixture was stirred for 2 h at 0°C. The resulting solution was washed with saturated NaHCO3 solution, extracted with dichloromethane and dried over MgSO4. The solution was filtered and purified by column chroatography on silica gel, using ehtyl acetate and petroleum as eluant to afford the title compound. Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a chloroform and methanol solution in ratio of 100:1 at 293 K.

Refinement

C-bound H atoms were initially located in difference maps and then constrained to their ideal positions (C–H = 0.93–0.98 Å), and refined as riding with Uiso(H)=1.2–1.5Ueq(C). The hydroxy atom H3A was located on difference map and refined with bond restraint O–H = 0.82 (1) Å, and with the Uiso(H) =1.5Ueq(O). Two ethyl groups were treated as disordered between two orientations with the refined occupancies of 0.786 (7)/0.214 (7) [C8—C9/C8'-C9'] and 0.727 (6)/0.273 (6) [C10—C11/C10'-C11'], respectively.

Figures

Fig. 1.
View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The minor parts of disordered ethyl groups are omitted.
Fig. 2.
A portion of crystal packing showing the hydrogen-bonded (dashed lines) dimers in (I). H atoms not invloved in hydrogen bonds have been omitted for clarity.

Crystal data

C11H16NO6PZ = 2
Mr = 289.22F000 = 304
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.5659 (13) ÅCell parameters from 3014 reflections
b = 8.3844 (15) Åθ = 2.8–28.0º
c = 12.557 (2) ŵ = 0.22 mm1
α = 73.356 (3)ºT = 291 (2) K
β = 87.391 (3)ºBlock, colourless
γ = 64.432 (3)º0.30 × 0.20 × 0.20 mm
V = 685.6 (2) Å3

Data collection

Bruker SMART 4K CCD area-detector diffractometer2381 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Monochromator: graphiteθmax = 26.5º
T = 291(2) Kθmin = 1.7º
[var phi] and ω scansh = −9→9
Absorption correction: nonek = −10→10
6168 measured reflectionsl = −15→15
2800 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157  w = 1/[σ2(Fo2) + (0.0955P)2 + 0.1438P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2800 reflectionsΔρmax = 0.38 e Å3
193 parametersΔρmin = −0.20 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
P10.33556 (9)0.33802 (9)0.13960 (4)0.0648 (2)
C10.6327 (3)0.2053 (3)0.31083 (16)0.0521 (4)
C20.5564 (3)0.2596 (3)0.40485 (16)0.0548 (5)
C30.6201 (4)0.1419 (3)0.51225 (18)0.0691 (6)
H30.56400.18190.57280.083*
C40.7655 (4)−0.0332 (3)0.5291 (2)0.0760 (6)
H40.8103−0.11250.60120.091*
C50.8460 (4)−0.0924 (3)0.4386 (2)0.0782 (7)
H50.9455−0.21150.44950.094*
C60.7784 (3)0.0256 (3)0.3323 (2)0.0676 (5)
H60.8328−0.01710.27230.081*
N10.4048 (3)0.4469 (3)0.39566 (16)0.0673 (5)
C70.5651 (3)0.3239 (3)0.19053 (16)0.0574 (5)
H70.54810.44910.18390.069*
C80.0059 (6)0.5738 (7)0.1961 (3)0.0961 (13)0.784 (7)
H8A−0.04690.60010.12080.115*0.784 (7)
H8B0.03540.67440.19870.115*0.784 (7)
C9−0.1387 (9)0.5585 (11)0.2750 (7)0.1132 (17)0.784 (7)
H9A−0.17310.46370.26880.170*0.784 (7)
H9B−0.25430.67460.25840.170*0.784 (7)
H9C−0.08330.52710.34960.170*0.784 (7)
C100.2216 (8)0.0840 (9)0.1406 (5)0.1275 (19)0.733 (6)
H10A0.18650.03090.21290.153*0.733 (6)
H10B0.10720.19750.10390.153*0.733 (6)
C110.2598 (15)−0.0343 (12)0.0801 (5)0.133 (2)0.733 (6)
H11A0.27440.02370.00460.199*0.733 (6)
H11B0.1531−0.06770.08110.199*0.733 (6)
H11C0.3792−0.14360.11150.199*0.733 (6)
C8'−0.024 (2)0.471 (3)0.2069 (13)0.0961 (13)0.216 (7)
H8C−0.06150.51260.12740.115*0.216 (7)
H8D−0.06360.37350.24120.115*0.216 (7)
C9'−0.112 (4)0.604 (4)0.247 (3)0.1132 (17)0.216 (7)
H9D−0.16370.56240.31480.170*0.216 (7)
H9E−0.21740.70160.19410.170*0.216 (7)
H9F−0.02090.64820.26190.170*0.216 (7)
C10'0.340 (2)0.050 (2)0.0838 (15)0.1275 (19)0.267 (6)
H10C0.25550.14600.01940.153*0.267 (6)
H10D0.4623−0.02450.05790.153*0.267 (6)
C11'0.254 (5)−0.055 (4)0.1332 (16)0.133 (2)0.267 (6)
H11D0.3195−0.12790.20640.199*0.267 (6)
H11E0.2613−0.13480.09010.199*0.267 (6)
H11F0.11880.02210.13940.199*0.267 (6)
O10.2928 (3)0.4664 (3)0.46827 (17)0.0988 (6)
O20.3979 (3)0.5760 (2)0.31795 (16)0.0925 (6)
O30.7091 (3)0.2488 (3)0.12000 (14)0.0823 (5)
H3A0.711 (6)0.338 (3)0.072 (2)0.123*
O40.2695 (3)0.4578 (3)0.02454 (13)0.0976 (7)
O50.1853 (2)0.3993 (2)0.22587 (12)0.0713 (4)
O60.3792 (3)0.1322 (3)0.15899 (16)0.0909 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0644 (4)0.0939 (5)0.0463 (3)−0.0471 (3)0.0061 (2)−0.0157 (3)
C10.0521 (10)0.0583 (10)0.0551 (10)−0.0320 (8)0.0044 (8)−0.0172 (8)
C20.0544 (11)0.0607 (11)0.0555 (10)−0.0299 (9)0.0010 (8)−0.0181 (8)
C30.0756 (15)0.0867 (15)0.0526 (11)−0.0434 (13)−0.0008 (10)−0.0178 (10)
C40.0763 (15)0.0768 (14)0.0667 (14)−0.0378 (13)−0.0155 (11)0.0005 (11)
C50.0650 (14)0.0618 (12)0.0967 (18)−0.0248 (11)−0.0065 (13)−0.0101 (12)
C60.0627 (13)0.0669 (12)0.0765 (14)−0.0292 (10)0.0083 (10)−0.0249 (11)
N10.0710 (12)0.0710 (11)0.0634 (11)−0.0281 (9)0.0009 (9)−0.0288 (9)
C70.0570 (11)0.0715 (12)0.0523 (10)−0.0357 (10)0.0109 (8)−0.0193 (9)
C80.069 (2)0.089 (3)0.091 (2)−0.0168 (18)0.0057 (17)0.001 (2)
C90.070 (3)0.132 (5)0.152 (5)−0.049 (2)0.049 (3)−0.061 (4)
C100.105 (4)0.176 (5)0.175 (5)−0.095 (4)0.042 (3)−0.107 (4)
C110.192 (5)0.146 (4)0.114 (5)−0.114 (4)−0.006 (6)−0.048 (5)
C8'0.069 (2)0.089 (3)0.091 (2)−0.0168 (18)0.0057 (17)0.001 (2)
C9'0.070 (3)0.132 (5)0.152 (5)−0.049 (2)0.049 (3)−0.061 (4)
C10'0.105 (4)0.176 (5)0.175 (5)−0.095 (4)0.042 (3)−0.107 (4)
C11'0.192 (5)0.146 (4)0.114 (5)−0.114 (4)−0.006 (6)−0.048 (5)
O10.0921 (14)0.1054 (14)0.0858 (12)−0.0239 (11)0.0255 (11)−0.0433 (11)
O20.1164 (16)0.0613 (9)0.0886 (12)−0.0296 (10)0.0086 (11)−0.0210 (9)
O30.0725 (11)0.1066 (14)0.0690 (10)−0.0401 (10)0.0278 (8)−0.0296 (9)
O40.0928 (13)0.1595 (19)0.0495 (9)−0.0782 (13)0.0003 (8)−0.0059 (10)
O50.0563 (9)0.0873 (10)0.0569 (8)−0.0282 (8)0.0041 (7)−0.0067 (7)
O60.0959 (14)0.1074 (14)0.1021 (14)−0.0641 (12)0.0083 (10)−0.0463 (11)

Geometric parameters (Å, °)

P1—O41.4653 (18)C9—H9B0.9600
P1—O61.556 (2)C9—H9C0.9600
P1—O51.5598 (16)C10—C111.345 (9)
P1—C71.822 (2)C10—O61.461 (5)
C1—C61.386 (3)C10—H10A0.9700
C1—C21.398 (3)C10—H10B0.9700
C1—C71.518 (3)C11—H11A0.9600
C2—C31.383 (3)C11—H11B0.9600
C2—N11.466 (3)C11—H11C0.9600
C3—C41.364 (4)C8'—C9'1.26 (3)
C3—H30.9300C8'—O51.435 (15)
C4—C51.381 (4)C8'—H8C0.9700
C4—H40.9300C8'—H8D0.9700
C5—C61.375 (3)C9'—H9D0.9600
C5—H50.9300C9'—H9E0.9600
C6—H60.9300C9'—H9F0.9600
N1—O11.213 (3)C10'—C11'1.31 (3)
N1—O21.215 (3)C10'—O61.426 (13)
C7—O31.417 (2)C10'—H10C0.9700
C7—H70.9800C10'—H10D0.9700
C8—O51.463 (4)C11'—H11D0.9600
C8—C91.465 (7)C11'—H11E0.9600
C8—H8A0.9700C11'—H11F0.9600
C8—H8B0.9700O3—H3A0.817 (10)
C9—H9A0.9600
O4—P1—O6115.38 (12)H8A—C8—H8B108.3
O4—P1—O5114.16 (11)C11—C10—O6116.7 (6)
O6—P1—O5103.70 (10)C11—C10—H10A108.1
O4—P1—C7112.67 (10)O6—C10—H10A108.1
O6—P1—C7103.71 (10)C11—C10—H10B108.1
O5—P1—C7106.13 (9)O6—C10—H10B108.1
C6—C1—C2115.53 (19)H10A—C10—H10B107.3
C6—C1—C7118.91 (18)C9'—C8'—O5111 (2)
C2—C1—C7125.53 (17)C9'—C8'—H8C109.4
C3—C2—C1122.48 (19)O5—C8'—H8C109.4
C3—C2—N1115.65 (18)C9'—C8'—H8D109.4
C1—C2—N1121.86 (17)O5—C8'—H8D109.4
C4—C3—C2119.8 (2)H8C—C8'—H8D108.0
C4—C3—H3120.1C8'—C9'—H9D109.5
C2—C3—H3120.1C8'—C9'—H9E109.5
C3—C4—C5119.7 (2)H9D—C9'—H9E109.5
C3—C4—H4120.2C8'—C9'—H9F109.5
C5—C4—H4120.2H9D—C9'—H9F109.5
C6—C5—C4119.7 (2)H9E—C9'—H9F109.5
C6—C5—H5120.1C11'—C10'—O6110.4 (15)
C4—C5—H5120.1C11'—C10'—H10C109.6
C5—C6—C1122.8 (2)O6—C10'—H10C109.6
C5—C6—H6118.6C11'—C10'—H10D109.6
C1—C6—H6118.6O6—C10'—H10D109.6
O1—N1—O2122.7 (2)H10C—C10'—H10D108.1
O1—N1—C2117.8 (2)C10'—C11'—H11D109.5
O2—N1—C2119.50 (19)C10'—C11'—H11E109.5
O3—C7—C1109.76 (17)H11D—C11'—H11E109.5
O3—C7—P1106.87 (14)C10'—C11'—H11F109.5
C1—C7—P1113.49 (13)H11D—C11'—H11F109.5
O3—C7—H7108.9H11E—C11'—H11F109.5
C1—C7—H7108.9C7—O3—H3A106 (3)
P1—C7—H7108.9C8'—O5—P1125.3 (7)
O5—C8—C9109.0 (4)C8—O5—P1122.36 (19)
O5—C8—H8A109.9C10'—O6—C1045.2 (6)
C9—C8—H8A109.9C10'—O6—P1128.7 (8)
O5—C8—H8B109.9C10—O6—P1120.3 (3)
C9—C8—H8B109.9
C6—C1—C2—C3−0.6 (3)O6—P1—C7—C1−56.38 (16)
C7—C1—C2—C3177.55 (19)O5—P1—C7—C152.54 (17)
C6—C1—C2—N1178.54 (19)C9'—C8'—O5—C8−39.6 (17)
C7—C1—C2—N1−3.3 (3)C9'—C8'—O5—P1−139.1 (16)
C1—C2—C3—C41.3 (3)C9—C8—O5—C8'49.1 (11)
N1—C2—C3—C4−177.8 (2)C9—C8—O5—P1156.6 (4)
C2—C3—C4—C5−0.9 (4)O4—P1—O5—C8'39.3 (10)
C3—C4—C5—C6−0.2 (4)O6—P1—O5—C8'−87.1 (10)
C4—C5—C6—C11.0 (4)C7—P1—O5—C8'164.0 (10)
C2—C1—C6—C5−0.6 (3)O4—P1—O5—C8−7.3 (3)
C7—C1—C6—C5−178.8 (2)O6—P1—O5—C8−133.7 (3)
C3—C2—N1—O1−29.3 (3)C7—P1—O5—C8117.4 (3)
C1—C2—N1—O1151.6 (2)C11'—C10'—O6—C10−35.3 (18)
C3—C2—N1—O2149.4 (2)C11'—C10'—O6—P1−131.9 (19)
C1—C2—N1—O2−29.8 (3)C11—C10—O6—C10'16.3 (12)
C6—C1—C7—O3−19.2 (2)C11—C10—O6—P1132.5 (6)
C2—C1—C7—O3162.69 (18)O4—P1—O6—C10'−8.9 (8)
C6—C1—C7—P1100.3 (2)O5—P1—O6—C10'116.7 (8)
C2—C1—C7—P1−77.8 (2)C7—P1—O6—C10'−132.6 (8)
O4—P1—C7—O3−60.70 (19)O4—P1—O6—C10−63.6 (3)
O6—P1—C7—O364.75 (16)O5—P1—O6—C1062.0 (3)
O5—P1—C7—O3173.68 (13)C7—P1—O6—C10172.7 (3)
O4—P1—C7—C1178.17 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.82 (1)1.857 (11)2.671 (3)174 (4)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2361).

References

  • Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. & Ringrose, P. S. (1978). Nature (London), 272, 56–58. [PubMed]
  • Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P. A., Taylor, S., Yager, K. M., Sprengler, P. A. & Benkovic, S. J. (1994). Science, 265, 234–237. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography