PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o134.
Published online 2007 December 6. doi:  10.1107/S1600536807063222
PMCID: PMC2915203

7-Bromo-3-ethyl-9-phenyl-2-tosyl­pyrrolo[3,4-b]quinoline

Abstract

In the title compound, C26H27BrN2O2S, the pyrrolidine ring adopts a twist conformation, while the tetra­hydro­pyridine ring is in a half-chair conformation. The two rings are trans-fused. The dihedral angle between the phenyl ring and the sulfonyl-bound benzene ring is 22.83 (7)°. N—H(...)O hydrogen bonds link the mol­ecules into a chain along the b axis, and the chains are cross-linked into a three-dimensional network by a C—H(...)π inter­action and a weak π-π inter­action between the sulfonyl-bound benzene rings; the centroid–centroid distance is 3.6957 (8) Å.

Related literature

The crystal structure of the title compound is similar to that of its chloro analogue (Sudha et al., 2007 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Duax et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o134-scheme1.jpg

Experimental

Crystal data

  • C26H27BrN2O2S
  • M r = 511.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o134-efi1.jpg
  • a = 9.6293 (2) Å
  • b = 13.4574 (3) Å
  • c = 20.2179 (4) Å
  • β = 116.930 (1)°
  • V = 2335.84 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.88 mm−1
  • T = 100.0 (1) K
  • 0.58 × 0.52 × 0.34 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.323, T max = 0.529
  • 58171 measured reflections
  • 14302 independent reflections
  • 9599 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.094
  • S = 1.01
  • 14302 reflections
  • 294 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.13 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 1998 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063222/is2257sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063222/is2257Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

supplementary crystallographic information

Comment

Previously, we have reported the crystal structure of 7-chloro-2-ethyl-5-phenyl-3-tosyl-pyrrolo[3,4-b]quinoline (Sudha et al., 2007). Now we report here the crystal structure of the bromo analogue, the title compound.

Bond lengths and angles are comparable with those in the chloro analogue (Sudha et al., 2007). A superposition of the non-H atoms (except halides) of the title molecule and its chloro analogue (Fig. 2) using XP in SHELXTL (Sheldrick, 1998), gave an r.m.s. deviation of 0.868 Å. In both compounds, the pyrrolidine ring is trans-fused to the tetrahydropyridine ring.

The pyrrolidine ring has a twist conformation; the asymmetry parameters ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and [var phi] (Cremer & Pople, 1975) are 0.5 (1)°, 0.481 (1) Å and 270.5 (1)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a half-chair conformation, with Q, θ, [var phi] and ΔC2[C4—C9] values of 0.461 (1) Å, 44.6 (2)°, 269.1 (2)° and 2.4 (2)°, respectively. The phenyl group is attached to the tetrahydropyridine ring in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 72.42 (3) and 22.83 (7)°, respectively, with the C4—C9 and C12—C17 benzene rings.

As observed in the isomorphous chloro analogue, the screw-related molecules are linked into a chain along the b axis through N—H···O hydrogen bonds and the chains are cross-linked into a three-dimensional framework (Fig. 3) by C—H···π interactions (Table 2) and π-π interactions between the C12—C17 benzene rings of molecules at (x, y, z) and (2 - x, 1 - y, 1 - z) [the centroid-centroid distance is 3.6957 (8) Å].

Experimental

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)butanal (1 mmol) and arylamine (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 30 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

The N-bound H atom was located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups attached to aromatic rings. The highest residual density peak and the deepest hole are located 0.65 and 0.58 Å, respectively, from atom Br1.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 80% probability level.
Fig. 2.
Fit of the title molecule (solid lines) with its chloro analogue (Dashed lines). H atoms have been omitted for clarity.
Fig. 3.
Part of the three-dimensional network in the title compound. Dashed and dotted lines indicate N—H···O and C—H···π interactions, respectively. The π-π interaction is ...

Crystal data

C26H27BrN2O2SF000 = 1056
Mr = 511.47Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5745 reflections
a = 9.6293 (2) Åθ = 2.4–38.4º
b = 13.4574 (3) ŵ = 1.88 mm1
c = 20.2179 (4) ÅT = 100.0 (1) K
β = 116.930 (1)ºBlock, colourless
V = 2335.84 (9) Å30.58 × 0.52 × 0.34 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer14302 independent reflections
Radiation source: fine-focus sealed tube9599 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.055
Detector resolution: 8.33 pixels mm-1θmax = 40.0º
T = 100.0(1) Kθmin = 2.3º
ω scansh = −16→17
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −24→23
Tmin = 0.323, Tmax = 0.529l = −36→36
58171 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094  w = 1/[σ2(Fo2) + (0.0418P)2 + 0.5198P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
14302 reflectionsΔρmax = 1.13 e Å3
294 parametersΔρmin = −0.63 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.009166 (12)0.383484 (9)−0.061858 (7)0.01903 (3)
S11.10805 (3)0.50065 (2)0.342333 (16)0.01644 (5)
O11.16380 (10)0.60150 (7)0.35422 (6)0.02221 (18)
O21.21739 (10)0.42008 (7)0.36992 (5)0.02180 (17)
N11.00957 (10)0.48551 (7)0.25246 (6)0.01539 (16)
N20.70188 (11)0.31729 (7)0.13123 (6)0.01682 (17)
H1N20.738 (2)0.2632 (16)0.1260 (10)0.024 (4)*
C10.87389 (12)0.55496 (8)0.21501 (6)0.01499 (18)
H1A0.88350.59400.17700.018*
H1B0.86420.59930.25050.018*
C20.73638 (11)0.48360 (8)0.18133 (6)0.01310 (16)
H20.71740.45740.22170.016*
C30.58180 (11)0.52210 (8)0.12093 (6)0.01333 (16)
H30.60320.56030.08530.016*
C40.48065 (12)0.43277 (8)0.08039 (6)0.01331 (16)
C50.32017 (12)0.44516 (8)0.03642 (6)0.01504 (17)
H50.27500.50700.03410.018*
C60.22782 (12)0.36598 (8)−0.00374 (6)0.01598 (18)
C70.29217 (13)0.27321 (9)−0.00227 (7)0.01821 (19)
H70.23020.2211−0.03050.022*
C80.45046 (13)0.25954 (9)0.04208 (7)0.01821 (19)
H80.49420.19740.04380.022*
C90.54584 (12)0.33745 (8)0.08428 (6)0.01469 (17)
C100.80650 (12)0.40097 (8)0.15527 (6)0.01407 (17)
H100.82710.42450.11470.017*
C110.95981 (12)0.38117 (8)0.22454 (6)0.01524 (17)
H110.93650.34570.26070.018*
C120.97389 (13)0.48916 (9)0.37889 (7)0.01797 (19)
C130.93661 (13)0.39511 (9)0.39459 (7)0.0197 (2)
H130.98720.33920.38910.024*
C140.82254 (14)0.38560 (11)0.41864 (7)0.0231 (2)
H140.79980.32310.43080.028*
C150.74214 (15)0.46833 (12)0.42474 (7)0.0246 (2)
C160.78110 (17)0.56192 (12)0.40851 (8)0.0274 (3)
H160.72830.61770.41250.033*
C170.89758 (16)0.57311 (10)0.38651 (8)0.0233 (2)
H170.92440.63600.37700.028*
C180.61530 (19)0.45797 (15)0.44829 (10)0.0352 (3)
H18A0.60930.39010.46130.053*
H18B0.51750.47740.40810.053*
H18C0.63820.49980.49040.053*
C190.51164 (12)0.59192 (8)0.15662 (6)0.01492 (18)
C200.53584 (13)0.69413 (9)0.15655 (7)0.0195 (2)
H200.58360.71980.12930.023*
C210.48931 (15)0.75812 (10)0.19693 (8)0.0268 (3)
H210.50760.82600.19710.032*
C220.41570 (16)0.72071 (12)0.23691 (8)0.0295 (3)
H220.38460.76340.26390.035*
C230.38881 (16)0.61938 (12)0.23646 (8)0.0281 (3)
H230.33780.59430.26240.034*
C240.43787 (14)0.55503 (10)0.19723 (7)0.0213 (2)
H240.42140.48700.19810.026*
C251.08137 (13)0.32202 (9)0.21256 (7)0.0192 (2)
H25A1.17490.31780.25950.023*
H25B1.04260.25490.19820.023*
C261.12569 (16)0.36324 (11)0.15477 (9)0.0265 (3)
H26A1.20250.32100.15130.040*
H26B1.16760.42890.16890.040*
H26C1.03500.36590.10750.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01395 (4)0.02093 (5)0.01897 (6)−0.00094 (4)0.00462 (4)−0.00109 (4)
S10.01233 (9)0.01608 (11)0.01730 (12)−0.00234 (8)0.00355 (8)0.00071 (9)
O10.0193 (4)0.0188 (4)0.0239 (5)−0.0068 (3)0.0058 (3)−0.0019 (3)
O20.0137 (3)0.0224 (4)0.0233 (4)0.0014 (3)0.0031 (3)0.0035 (3)
N10.0130 (3)0.0142 (4)0.0165 (4)0.0004 (3)0.0046 (3)0.0013 (3)
N20.0143 (3)0.0113 (4)0.0230 (5)0.0005 (3)0.0068 (3)−0.0021 (3)
C10.0139 (4)0.0123 (4)0.0172 (5)−0.0001 (3)0.0057 (3)0.0005 (3)
C20.0128 (3)0.0117 (4)0.0150 (4)0.0002 (3)0.0064 (3)−0.0001 (3)
C30.0136 (4)0.0126 (4)0.0143 (4)0.0000 (3)0.0067 (3)−0.0001 (3)
C40.0140 (4)0.0128 (4)0.0137 (4)−0.0004 (3)0.0068 (3)−0.0002 (3)
C50.0151 (4)0.0150 (4)0.0150 (5)0.0005 (3)0.0067 (3)0.0001 (3)
C60.0140 (4)0.0170 (5)0.0155 (5)−0.0018 (3)0.0054 (3)−0.0011 (4)
C70.0172 (4)0.0156 (4)0.0199 (5)−0.0028 (3)0.0067 (4)−0.0028 (4)
C80.0176 (4)0.0133 (4)0.0218 (5)−0.0011 (3)0.0072 (4)−0.0024 (4)
C90.0147 (4)0.0131 (4)0.0163 (5)0.0001 (3)0.0070 (3)0.0000 (3)
C100.0128 (4)0.0126 (4)0.0166 (5)0.0002 (3)0.0064 (3)−0.0001 (3)
C110.0141 (4)0.0133 (4)0.0172 (5)0.0001 (3)0.0061 (3)0.0009 (4)
C120.0157 (4)0.0206 (5)0.0148 (5)−0.0023 (3)0.0045 (4)0.0004 (4)
C130.0157 (4)0.0215 (5)0.0183 (5)−0.0002 (3)0.0045 (4)0.0045 (4)
C140.0195 (5)0.0283 (6)0.0191 (5)−0.0039 (4)0.0068 (4)0.0039 (5)
C150.0231 (5)0.0342 (7)0.0169 (5)−0.0046 (5)0.0094 (4)−0.0031 (5)
C160.0328 (6)0.0282 (7)0.0260 (7)−0.0002 (5)0.0176 (5)−0.0061 (5)
C170.0300 (6)0.0197 (5)0.0228 (6)−0.0022 (4)0.0141 (5)−0.0038 (4)
C180.0327 (7)0.0498 (10)0.0309 (8)−0.0065 (6)0.0212 (6)−0.0053 (7)
C190.0133 (4)0.0147 (4)0.0157 (5)0.0018 (3)0.0056 (3)−0.0021 (3)
C200.0185 (4)0.0152 (5)0.0220 (6)0.0024 (3)0.0067 (4)−0.0019 (4)
C210.0241 (5)0.0196 (5)0.0304 (7)0.0064 (4)0.0067 (5)−0.0080 (5)
C220.0244 (5)0.0361 (7)0.0248 (6)0.0097 (5)0.0084 (5)−0.0108 (5)
C230.0251 (5)0.0393 (8)0.0240 (6)0.0039 (5)0.0146 (5)−0.0052 (6)
C240.0210 (5)0.0242 (6)0.0216 (6)0.0001 (4)0.0123 (4)−0.0023 (4)
C250.0162 (4)0.0161 (5)0.0244 (6)0.0032 (3)0.0083 (4)0.0012 (4)
C260.0230 (5)0.0265 (6)0.0361 (8)0.0056 (4)0.0188 (5)0.0046 (5)

Geometric parameters (Å, °)

Br1—C61.9048 (11)C12—C131.3909 (17)
S1—O21.4363 (10)C12—C171.3937 (19)
S1—O11.4392 (9)C13—C141.3940 (18)
S1—N11.6375 (10)C13—H130.93
S1—C121.7619 (12)C14—C151.393 (2)
N1—C11.5025 (14)C14—H140.93
N1—C111.5083 (15)C15—C161.395 (2)
N2—C91.3930 (14)C15—C181.505 (2)
N2—C101.4408 (14)C16—C171.389 (2)
N2—H1N20.83 (2)C16—H160.93
C1—C21.5239 (14)C17—H170.93
C1—H1A0.97C18—H18A0.96
C1—H1B0.97C18—H18B0.96
C2—C101.5140 (15)C18—H18C0.96
C2—C31.5260 (14)C19—C201.3952 (16)
C2—H20.98C19—C241.3976 (17)
C3—C191.5171 (15)C20—C211.3929 (18)
C3—C41.5306 (15)C20—H200.93
C3—H30.98C21—C221.389 (2)
C4—C51.4006 (14)C21—H210.93
C4—C91.4145 (15)C22—C231.387 (2)
C5—C61.3898 (15)C22—H220.93
C5—H50.93C23—C241.3933 (19)
C6—C71.3881 (17)C23—H230.93
C7—C81.3867 (16)C24—H240.93
C7—H70.93C25—C261.5188 (19)
C8—C91.4003 (16)C25—H25A0.97
C8—H80.93C25—H25B0.97
C10—C111.5294 (15)C26—H26A0.96
C10—H100.98C26—H26B0.96
C11—C251.5230 (16)C26—H26C0.96
C11—H110.98
O2—S1—O1119.64 (6)N1—C11—H11108.4
O2—S1—N1106.93 (6)C25—C11—H11108.4
O1—S1—N1106.70 (6)C10—C11—H11108.4
O2—S1—C12108.58 (6)C13—C12—C17120.60 (12)
O1—S1—C12107.56 (6)C13—C12—S1119.32 (10)
N1—S1—C12106.77 (5)C17—C12—S1119.91 (10)
C1—N1—C11109.52 (8)C12—C13—C14119.25 (12)
C1—N1—S1114.59 (8)C12—C13—H13120.4
C11—N1—S1117.20 (8)C14—C13—H13120.4
C9—N2—C10116.82 (9)C15—C14—C13120.98 (12)
C9—N2—H1N2117.8 (13)C15—C14—H14119.5
C10—N2—H1N2117.2 (13)C13—C14—H14119.5
N1—C1—C2102.39 (8)C14—C15—C16118.77 (12)
N1—C1—H1A111.3C14—C15—C18121.14 (14)
C2—C1—H1A111.3C16—C15—C18120.09 (14)
N1—C1—H1B111.3C17—C16—C15121.01 (13)
C2—C1—H1B111.3C17—C16—H16119.5
H1A—C1—H1B109.2C15—C16—H16119.5
C10—C2—C1100.61 (8)C16—C17—C12119.34 (13)
C10—C2—C3113.45 (9)C16—C17—H17120.3
C1—C2—C3118.62 (9)C12—C17—H17120.3
C10—C2—H2107.9C15—C18—H18A109.5
C1—C2—H2107.9C15—C18—H18B109.5
C3—C2—H2107.9H18A—C18—H18B109.5
C19—C3—C2108.23 (9)C15—C18—H18C109.5
C19—C3—C4115.39 (9)H18A—C18—H18C109.5
C2—C3—C4108.39 (9)H18B—C18—H18C109.5
C19—C3—H3108.2C20—C19—C24118.71 (11)
C2—C3—H3108.2C20—C19—C3119.97 (10)
C4—C3—H3108.2C24—C19—C3120.91 (10)
C5—C4—C9118.53 (10)C21—C20—C19120.71 (13)
C5—C4—C3119.87 (9)C21—C20—H20119.6
C9—C4—C3121.58 (9)C19—C20—H20119.6
C6—C5—C4120.63 (10)C22—C21—C20120.10 (13)
C6—C5—H5119.7C22—C21—H21120.0
C4—C5—H5119.7C20—C21—H21120.0
C7—C6—C5121.05 (10)C23—C22—C21119.70 (12)
C7—C6—Br1118.84 (8)C23—C22—H22120.1
C5—C6—Br1120.10 (8)C21—C22—H22120.1
C8—C7—C6118.84 (10)C22—C23—C24120.29 (14)
C8—C7—H7120.6C22—C23—H23119.9
C6—C7—H7120.6C24—C23—H23119.9
C7—C8—C9121.34 (11)C23—C24—C19120.47 (13)
C7—C8—H8119.3C23—C24—H24119.8
C9—C8—H8119.3C19—C24—H24119.8
N2—C9—C8118.47 (10)C26—C25—C11115.82 (10)
N2—C9—C4121.95 (10)C26—C25—H25A108.3
C8—C9—C4119.54 (10)C11—C25—H25A108.3
N2—C10—C2109.73 (9)C26—C25—H25B108.3
N2—C10—C11114.21 (9)C11—C25—H25B108.3
C2—C10—C11101.94 (9)H25A—C25—H25B107.4
N2—C10—H10110.2C25—C26—H26A109.5
C2—C10—H10110.2C25—C26—H26B109.5
C11—C10—H10110.2H26A—C26—H26B109.5
N1—C11—C25114.16 (9)C25—C26—H26C109.5
N1—C11—C10101.06 (8)H26A—C26—H26C109.5
C25—C11—C10115.98 (10)H26B—C26—H26C109.5
O2—S1—N1—C1171.86 (8)C1—N1—C11—C25140.52 (10)
O1—S1—N1—C1−59.00 (9)S1—N1—C11—C25−86.74 (11)
C12—S1—N1—C155.78 (9)C1—N1—C11—C1015.29 (11)
O2—S1—N1—C1141.45 (9)S1—N1—C11—C10148.03 (8)
O1—S1—N1—C11170.58 (8)N2—C10—C11—N1−158.08 (9)
C12—S1—N1—C11−74.64 (9)C2—C10—C11—N1−39.82 (10)
C11—N1—C1—C214.81 (12)N2—C10—C11—C2577.92 (13)
S1—N1—C1—C2−119.27 (8)C2—C10—C11—C25−163.81 (9)
N1—C1—C2—C10−39.19 (10)O2—S1—C12—C13−30.53 (11)
N1—C1—C2—C3−163.49 (9)O1—S1—C12—C13−161.35 (9)
C10—C2—C3—C19171.06 (9)N1—S1—C12—C1384.45 (10)
C1—C2—C3—C19−71.20 (12)O2—S1—C12—C17154.32 (10)
C10—C2—C3—C445.25 (12)O1—S1—C12—C1723.50 (12)
C1—C2—C3—C4162.98 (9)N1—S1—C12—C17−90.71 (11)
C19—C3—C4—C541.53 (14)C17—C12—C13—C14−0.47 (18)
C2—C3—C4—C5163.04 (10)S1—C12—C13—C14−175.59 (9)
C19—C3—C4—C9−140.35 (11)C12—C13—C14—C152.16 (19)
C2—C3—C4—C9−18.85 (14)C13—C14—C15—C16−2.0 (2)
C9—C4—C5—C6−1.42 (17)C13—C14—C15—C18177.98 (13)
C3—C4—C5—C6176.75 (10)C14—C15—C16—C170.1 (2)
C4—C5—C6—C7−0.96 (18)C18—C15—C16—C17−179.85 (14)
C4—C5—C6—Br1178.88 (9)C15—C16—C17—C121.5 (2)
C5—C6—C7—C82.08 (19)C13—C12—C17—C16−1.4 (2)
Br1—C6—C7—C8−177.76 (10)S1—C12—C17—C16173.74 (11)
C6—C7—C8—C9−0.81 (19)C2—C3—C19—C2095.33 (12)
C10—N2—C9—C8160.86 (11)C4—C3—C19—C20−143.08 (11)
C10—N2—C9—C4−21.63 (16)C2—C3—C19—C24−77.22 (12)
C7—C8—C9—N2176.02 (11)C4—C3—C19—C2444.37 (14)
C7—C8—C9—C4−1.56 (18)C24—C19—C20—C210.84 (17)
C5—C4—C9—N2−174.85 (11)C3—C19—C20—C21−171.88 (11)
C3—C4—C9—N27.01 (17)C19—C20—C21—C22−1.04 (19)
C5—C4—C9—C82.64 (17)C20—C21—C22—C230.0 (2)
C3—C4—C9—C8−175.50 (11)C21—C22—C23—C241.2 (2)
C9—N2—C10—C247.11 (14)C22—C23—C24—C19−1.4 (2)
C9—N2—C10—C11160.83 (10)C20—C19—C24—C230.37 (18)
C1—C2—C10—N2171.23 (9)C3—C19—C24—C23173.02 (11)
C3—C2—C10—N2−61.01 (12)N1—C11—C25—C26−62.22 (14)
C1—C2—C10—C1149.81 (10)C10—C11—C25—C2654.68 (14)
C3—C2—C10—C11177.58 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.83 (2)2.33 (2)3.1381 (14)162 (2)
C25—H25A···O20.972.493.1312 (15)123
C3—H3···Cg1ii0.982.833.7921 (12)168

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2257).

References

  • Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.
  • Sheldrick, G. M. (1998). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography