PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o132–o133.
Published online 2007 December 6. doi:  10.1107/S1600536807062757
PMCID: PMC2915202

2-Carboxy­quinolinium–2,4,6-trinitro­benzene­sulfonate–quinolinium-2-carboxyl­ate (1/1/1)

Abstract

The structure of the title adduct compound, C10H8NO2 +·C6H2N3O9S·C10H7NO2, from the reaction of 2,4,6-trinitro­benzene­sulfonic acid (picrylsulfonic acid) with quinoline-2-carboxylic acid (quinaldic acid) in 2-propanol–water, has been determined at 130 (2) K. The cation and the adduct species form a twisted cyclic hydrogen-bonded R 2 2(10) pseudo-dimer which is extended into a one-dimensional chain structure through short head-to-tail carboxylic acid O—H(...)Ocarbox­yl associations [O(...)O = 2.4711 (19) Å]. The picrylsulfonate anions are attached peripherally by single N—H(...)Osulfonate hydrogen bonds [N(...)O = 2.8643 (19) Å].

Related literature

For other related picrylsulfonate and quinaldic acid structures, see: Russell & Ward (1997 [triangle]); Smith et al. (2004 [triangle]); Smith, Wermuth & Healy (2006 [triangle]); Smith, Wermuth & White (2006 [triangle]); Smith, Wermuth, Healy & White (2007 [triangle]); Smith, Wermuth & White (2007 [triangle]); Dobrzyńska & Jerzykiewicz (2004 [triangle]).

For graph-set nomenclature, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o132-scheme1.jpg

Experimental

Crystal data

  • C10H8NO2 +·C6H2N3O9S·C10H7NO2
  • M r = 639.51
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o132-efi1.jpg
  • a = 7.8872 (6) Å
  • b = 12.4753 (10) Å
  • c = 14.6617 (12) Å
  • α = 66.227 (1)°
  • β = 74.997 (2)°
  • γ = 82.191 (2)°
  • V = 1274.42 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 130 (2) K
  • 0.40 × 0.30 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.93, T max = 0.98
  • 6761 measured reflections
  • 4446 independent reflections
  • 3779 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.090
  • S = 1.00
  • 4446 reflections
  • 419 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062757/sf2012sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062757/sf2012Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, the School of Biomolecular and Physical Sciences, Griffith University, and the School of Chemistry, University of Melbourne.

supplementary crystallographic information

Comment

Picrylsulfonic acid (2,4,6-trinitrobenzenesulfonic acid) reacts with certain Lewis bases to form 1:1 proton-transfer salts and the structures of a small number of these are known: with guanidine (Russell & Ward, 1997) and quinoline (Smith, Wermuth & Healy, 2006). However, the 1:1 reaction with quinoline-2-carboxylic acid in 80% 2-propanol-water resulted in the adduct salt 2-carboxyquinolinium-2,4,6-trinitrobenzenesulfonate-quinolinium- 2-carboxylate (1/1/1) (I) and the structure is reported here. In (I), the asymmetric unit comprises a protonated quinaldic acid cation (A), a picrylsulfonate anion and a zwitterionic quinaldic acid adduct molecule (B) (Fig. 1). The cation and the adduct species form a pseudo-dimer through a twisted cyclic hydrogen-bonded duplex N–H···O association [graph set R22(10) (Etter et al., 1990]. This pseudo-dimer incorporates a cyclic R22(4) association and two intramolecular S(5) NH···Ocarboxyl associations and is similar to that found in the zwitterionic parent acid (Dobrzyńska & Jerzykiewicz, 2004), the 1:2 L-tartaric acid-quinaldic acid adduct (Smith, Wermuth & White, 2006) and in the analogous (1:1:1) protonated quinaldic acid-zwitterionic adduct compounds with 5-sulfosalicylic acid (Smith et al., 2004) and 4,5-dichlorophthalic acid (Smith, Wermuth & White, 2007). However, in the 1:1 compound with 3,5-dinitrosalicylic acid (Smith, Wermuth, Healy & White, 2007), this dimer is not found.

In (I), the pseudo-dimers are extended into one-dimensional chain structures through short head-to-tail carboxylic acid O–H··· Ocarboxyl associations [O···O, 2.4711 (19) Å] (Fig. 2). The picrylsulfonate anions are attached peripherally by single NH···Osulfonate hydrogen bonds (Table 1).

All nitro groups of the anion are rotated out of the plane of the benzene ring, particularly those which are ortho to the sulfonate group [torsion angle C1–C2–N2–O22, -139.19 (17) °; C5–C6–N6–O62, 115.70 (17) °], compared to the para- related group [torsion angle C3–C4–N4–O42, 165.79 (16) °].

Experimental

The title compound was synthesized by heating under reflux 1 mmol quantities of 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) and quinoline-2-carboxylic acid (quinaldic acid) in 50 ml of 80% 2-propanol-water for 10 minutes. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale yellow flat prisms of (I) [m.pt. 495–496 K].

Refinement

Interactive hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic ring H atoms were included in the refinement in calculated positions (C–H = 0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the cation, anion and the zwitterionic adduct species in (I). Inter-species hydrogen-bonding interactions are shown as dashed lines. Non-H atom displacement ellipsoids are drawn at the 50% probability ...
Fig. 2.
A perspective view of the one-dimensional head-to-tail cation-adduct dimer extension and peripheral N–H···Osulfonate associations in (I). Non-interactive H-atoms are omitted while hydrogen bonds are shown as dashed lines. ...

Crystal data

C10H8NO2+·C6H2N3O9S·C10H7NO2Z = 2
Mr = 639.51F000 = 656
Triclinic, P1Dx = 1.667 Mg m3
Hall symbol: -P 1Melting point = 495–496 K
a = 7.8872 (6) ÅMo Kα radiation λ = 0.71073 Å
b = 12.4753 (10) ÅCell parameters from 3558 reflections
c = 14.6617 (12) Åθ = 2.7–27.5º
α = 66.227 (1)ºµ = 0.21 mm1
β = 74.997 (2)ºT = 130 (2) K
γ = 82.191 (2)ºPlate, colourless
V = 1274.42 (18) Å30.40 × 0.30 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer4446 independent reflections
Radiation source: sealed tube3779 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 130(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 1999)h = −9→9
Tmin = 0.93, Tmax = 0.98k = −14→14
6761 measured reflectionsl = −10→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0504P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.26 e Å3
4446 reflectionsΔρmin = −0.36 e Å3
419 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O21A0.58977 (15)0.59940 (10)0.39221 (10)0.0254 (4)
O21B1.00107 (15)0.64175 (10)0.34714 (10)0.0241 (4)
O22A0.38775 (15)0.50663 (10)0.36987 (9)0.0228 (4)
O22B1.16069 (15)0.60475 (11)0.46423 (10)0.0259 (4)
N1A0.84672 (18)0.51549 (12)0.27485 (11)0.0189 (4)
N1B0.74154 (18)0.73921 (12)0.45119 (11)0.0185 (5)
C2A0.6823 (2)0.48449 (14)0.29343 (13)0.0195 (5)
C2B0.8899 (2)0.70550 (14)0.48319 (13)0.0180 (5)
C3A0.6451 (2)0.41203 (14)0.24976 (14)0.0223 (5)
C3B0.9103 (2)0.72614 (14)0.56645 (13)0.0213 (5)
C4A0.7771 (2)0.37568 (15)0.18609 (14)0.0236 (6)
C4B0.7771 (2)0.78111 (15)0.61378 (14)0.0232 (5)
C5A1.0908 (2)0.38090 (16)0.09579 (14)0.0274 (6)
C5B0.4742 (2)0.86973 (15)0.62801 (14)0.0246 (6)
C6A1.2556 (2)0.41723 (16)0.07874 (14)0.0284 (6)
C6B0.3237 (2)0.89788 (15)0.59302 (15)0.0267 (6)
C7A1.2868 (2)0.48655 (16)0.12761 (14)0.0265 (6)
C7B0.3095 (2)0.87352 (15)0.50922 (14)0.0248 (6)
C8A1.1553 (2)0.51932 (15)0.19338 (13)0.0224 (5)
C8B0.4452 (2)0.82010 (14)0.46165 (14)0.0217 (5)
C9A0.9842 (2)0.48298 (14)0.21127 (13)0.0200 (5)
C9B0.6008 (2)0.79115 (14)0.49680 (13)0.0176 (5)
C10A0.9496 (2)0.41196 (14)0.16341 (14)0.0217 (6)
C10B0.6178 (2)0.81513 (14)0.58089 (13)0.0202 (5)
C21A0.5445 (2)0.53589 (14)0.35874 (13)0.0198 (5)
C21B1.0288 (2)0.64568 (14)0.42510 (14)0.0206 (5)
S10.67941 (6)0.96877 (4)0.18966 (3)0.0221 (1)
O110.79371 (16)1.05360 (11)0.18376 (10)0.0275 (4)
O120.49579 (16)0.99398 (11)0.22231 (9)0.0270 (4)
O130.73845 (16)0.84886 (11)0.23828 (9)0.0288 (4)
O210.48489 (16)0.78413 (11)0.16864 (10)0.0287 (4)
O220.69059 (17)0.69083 (10)0.09636 (10)0.0296 (4)
O410.89200 (16)0.91344 (11)−0.26263 (10)0.0280 (4)
O420.90947 (17)1.10219 (11)−0.31897 (9)0.0328 (4)
O610.92941 (16)1.23709 (11)−0.02903 (10)0.0295 (4)
O620.64569 (16)1.23611 (11)0.02533 (10)0.0295 (4)
N20.61840 (19)0.78074 (13)0.10551 (11)0.0222 (5)
N40.87752 (18)1.00599 (13)−0.25023 (11)0.0224 (5)
N60.78729 (19)1.19400 (12)−0.00650 (11)0.0219 (5)
C10.7125 (2)0.98489 (15)0.05707 (13)0.0182 (5)
C20.6957 (2)0.89262 (14)0.02920 (13)0.0183 (5)
C30.7470 (2)0.89921 (14)−0.07008 (13)0.0189 (5)
C40.8198 (2)1.00040 (15)−0.14463 (13)0.0187 (5)
C50.8392 (2)1.09627 (15)−0.12484 (13)0.0194 (5)
C60.7815 (2)1.08587 (14)−0.02403 (13)0.0189 (5)
H1A0.863 (3)0.5625 (18)0.3025 (16)0.036 (6)*
H1B0.737 (3)0.7269 (19)0.3989 (18)0.047 (7)*
H3A0.528500.388100.264200.0270*
H3B1.016000.702100.590000.0260*
H4A0.752100.325600.157000.0280*
H4B0.791700.796700.669500.0280*
H5A1.070800.334500.062000.0330*
H5B0.482400.886900.684200.0300*
H6A1.349900.395500.033500.0340*
H6B0.227300.934300.625300.0320*
H7A1.402500.511200.114500.0320*
H7B0.203700.894600.485500.0300*
H8A1.178600.565600.226400.0270*
H8B0.434000.803000.405900.0260*
H22A0.298 (3)0.5460 (19)0.4062 (18)0.057 (7)*
H30.732400.83520−0.086500.0230*
H50.889501.16590−0.177500.0230*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O21A0.0235 (7)0.0263 (7)0.0307 (8)−0.0017 (5)−0.0044 (6)−0.0160 (6)
O21B0.0219 (7)0.0299 (7)0.0259 (7)−0.0004 (5)−0.0044 (6)−0.0169 (6)
O22A0.0186 (7)0.0258 (7)0.0267 (7)−0.0008 (5)−0.0045 (6)−0.0131 (6)
O22B0.0215 (7)0.0315 (7)0.0275 (7)0.0055 (5)−0.0079 (6)−0.0148 (6)
N1A0.0204 (8)0.0189 (7)0.0192 (8)−0.0005 (6)−0.0049 (6)−0.0090 (7)
N1B0.0215 (8)0.0199 (8)0.0162 (8)−0.0008 (6)−0.0036 (6)−0.0094 (7)
C2A0.0225 (9)0.0155 (8)0.0176 (9)0.0001 (7)−0.0066 (8)−0.0025 (7)
C2B0.0198 (9)0.0145 (8)0.0174 (9)−0.0026 (7)−0.0043 (7)−0.0031 (7)
C3A0.0227 (9)0.0185 (9)0.0246 (10)−0.0028 (7)−0.0050 (8)−0.0068 (8)
C3B0.0228 (9)0.0216 (9)0.0190 (9)−0.0024 (7)−0.0062 (8)−0.0060 (8)
C4A0.0301 (10)0.0191 (9)0.0246 (10)−0.0015 (8)−0.0070 (8)−0.0106 (8)
C4B0.0306 (10)0.0237 (9)0.0180 (9)−0.0064 (8)−0.0054 (8)−0.0092 (8)
C5A0.0334 (11)0.0268 (10)0.0238 (10)0.0017 (8)−0.0044 (9)−0.0136 (9)
C5B0.0326 (11)0.0208 (9)0.0202 (10)−0.0043 (8)0.0018 (8)−0.0113 (8)
C6A0.0278 (10)0.0302 (10)0.0237 (10)0.0040 (8)−0.0005 (8)−0.0116 (9)
C6B0.0261 (10)0.0208 (9)0.0275 (11)−0.0007 (8)0.0048 (8)−0.0103 (8)
C7A0.0217 (10)0.0296 (10)0.0244 (10)0.0000 (8)−0.0031 (8)−0.0080 (9)
C7B0.0218 (10)0.0218 (9)0.0279 (11)−0.0018 (7)−0.0016 (8)−0.0086 (8)
C8A0.0224 (9)0.0240 (9)0.0210 (10)−0.0007 (8)−0.0061 (8)−0.0081 (8)
C8B0.0234 (9)0.0210 (9)0.0206 (10)−0.0035 (7)−0.0032 (8)−0.0081 (8)
C9A0.0239 (9)0.0179 (9)0.0155 (9)0.0030 (7)−0.0049 (7)−0.0046 (7)
C9B0.0203 (9)0.0147 (8)0.0165 (9)−0.0021 (7)−0.0003 (7)−0.0065 (7)
C10A0.0255 (10)0.0178 (9)0.0208 (10)0.0020 (7)−0.0065 (8)−0.0065 (8)
C10B0.0260 (10)0.0156 (8)0.0171 (9)−0.0050 (7)−0.0004 (8)−0.0057 (7)
C21A0.0225 (9)0.0160 (8)0.0190 (9)−0.0001 (7)−0.0054 (8)−0.0046 (8)
C21B0.0197 (9)0.0190 (9)0.0221 (10)−0.0035 (7)−0.0031 (8)−0.0069 (8)
S10.0203 (2)0.0327 (3)0.0160 (2)0.0025 (2)−0.0048 (2)−0.0128 (2)
O110.0244 (7)0.0413 (8)0.0250 (7)−0.0010 (6)−0.0066 (6)−0.0205 (6)
O120.0215 (7)0.0408 (8)0.0223 (7)0.0018 (6)−0.0029 (5)−0.0179 (6)
O130.0304 (7)0.0362 (8)0.0181 (7)0.0055 (6)−0.0078 (6)−0.0094 (6)
O210.0224 (7)0.0347 (7)0.0228 (7)−0.0028 (6)−0.0002 (6)−0.0072 (6)
O220.0380 (8)0.0202 (7)0.0280 (7)0.0022 (6)−0.0056 (6)−0.0087 (6)
O410.0296 (7)0.0351 (8)0.0272 (7)−0.0040 (6)−0.0021 (6)−0.0217 (6)
O420.0425 (8)0.0357 (8)0.0172 (7)−0.0152 (6)−0.0019 (6)−0.0057 (6)
O610.0277 (7)0.0296 (7)0.0372 (8)−0.0040 (6)−0.0095 (6)−0.0166 (6)
O620.0289 (7)0.0296 (7)0.0350 (8)0.0063 (6)−0.0075 (6)−0.0196 (6)
N20.0228 (8)0.0248 (8)0.0200 (8)0.0008 (6)−0.0081 (7)−0.0082 (7)
N40.0209 (8)0.0300 (9)0.0175 (8)−0.0058 (7)−0.0023 (6)−0.0101 (7)
N60.0229 (9)0.0238 (8)0.0225 (8)0.0009 (7)−0.0072 (7)−0.0116 (7)
C10.0151 (8)0.0244 (9)0.0168 (9)0.0037 (7)−0.0057 (7)−0.0096 (8)
C20.0172 (9)0.0182 (8)0.0185 (9)0.0016 (7)−0.0056 (7)−0.0059 (7)
C30.0183 (9)0.0202 (9)0.0213 (9)0.0030 (7)−0.0067 (7)−0.0110 (8)
C40.0169 (9)0.0249 (9)0.0160 (9)0.0012 (7)−0.0040 (7)−0.0100 (8)
C50.0171 (9)0.0208 (9)0.0203 (10)0.0006 (7)−0.0053 (7)−0.0075 (8)
C60.0174 (9)0.0214 (9)0.0228 (10)0.0037 (7)−0.0078 (8)−0.0129 (8)

Geometric parameters (Å, °)

S1—C11.8232 (18)C5A—C10A1.412 (3)
S1—O131.4442 (15)C5A—C6A1.363 (2)
S1—O111.4440 (15)C5B—C6B1.361 (2)
S1—O121.4367 (14)C5B—C10B1.410 (3)
O21A—C21A1.215 (2)C6A—C7A1.404 (3)
O21B—C21B1.239 (2)C6B—C7B1.413 (3)
O22A—C21A1.288 (2)C7A—C8A1.363 (3)
O22B—C21B1.265 (2)C7B—C8B1.368 (3)
O22A—H22A0.97 (2)C8A—C9A1.408 (2)
O21—N21.218 (2)C8B—C9B1.400 (2)
O22—N21.228 (2)C9A—C10A1.421 (3)
O41—N41.226 (2)C9B—C10B1.422 (2)
O42—N41.223 (2)C3A—H3A0.9500
O61—N61.218 (2)C3B—H3B0.9500
O62—N61.229 (2)C4A—H4A0.9500
N1A—C2A1.332 (2)C4B—H4B0.9500
N1A—C9A1.368 (2)C5A—H5A0.9500
N1B—C9B1.367 (2)C5B—H5B0.9500
N1B—C2B1.326 (2)C6A—H6A0.9500
N1A—H1A0.87 (2)C6B—H6B0.9500
N1B—H1B0.85 (2)C7A—H7A0.9500
N2—C21.480 (2)C7B—H7B0.9500
N4—C41.472 (2)C8A—H8A0.9500
N6—C61.480 (2)C8B—H8B0.9500
C2A—C3A1.396 (3)C1—C21.399 (3)
C2A—C21A1.509 (3)C1—C61.393 (3)
C2B—C21B1.513 (3)C2—C31.377 (2)
C2B—C3B1.396 (2)C3—C41.370 (3)
C3A—C4A1.368 (3)C4—C51.375 (3)
C3B—C4B1.366 (3)C5—C61.386 (2)
C4A—C10A1.407 (2)C3—H30.9500
C4B—C10B1.413 (2)C5—H50.9500
O12—S1—O13115.62 (8)C5B—C10B—C9B118.43 (15)
O12—S1—C1105.96 (8)C4B—C10B—C5B123.52 (16)
O13—S1—C1102.31 (8)O21A—C21A—C2A118.93 (15)
O11—S1—C1103.56 (8)O22A—C21A—C2A113.06 (15)
O11—S1—O12114.08 (9)O21A—C21A—O22A127.99 (17)
O11—S1—O13113.42 (8)O21B—C21B—C2B117.66 (15)
C21A—O22A—H22A113.0 (15)O22B—C21B—C2B114.26 (16)
C2A—N1A—C9A123.24 (16)O21B—C21B—O22B128.07 (17)
C2B—N1B—C9B124.03 (15)C2A—C3A—H3A120.00
C9A—N1A—H1A120.2 (16)C4A—C3A—H3A120.00
C2A—N1A—H1A116.5 (16)C2B—C3B—H3B120.00
C9B—N1B—H1B119.9 (17)C4B—C3B—H3B120.00
C2B—N1B—H1B116.0 (17)C10A—C4A—H4A120.00
O21—N2—C2118.58 (16)C3A—C4A—H4A120.00
O22—N2—C2116.42 (14)C10B—C4B—H4B120.00
O21—N2—O22124.89 (16)C3B—C4B—H4B120.00
O41—N4—C4117.43 (15)C6A—C5A—H5A120.00
O41—N4—O42124.80 (15)C10A—C5A—H5A120.00
O42—N4—C4117.77 (16)C6B—C5B—H5B120.00
O61—N6—C6118.03 (15)C10B—C5B—H5B120.00
O62—N6—C6116.65 (15)C5A—C6A—H6A120.00
O61—N6—O62125.23 (16)C7A—C6A—H6A120.00
C3A—C2A—C21A123.84 (15)C5B—C6B—H6B120.00
N1A—C2A—C21A116.27 (16)C7B—C6B—H6B120.00
N1A—C2A—C3A119.84 (16)C6A—C7A—H7A119.00
N1B—C2B—C3B119.65 (16)C8A—C7A—H7A119.00
C3B—C2B—C21B123.91 (15)C6B—C7B—H7B119.00
N1B—C2B—C21B116.44 (15)C8B—C7B—H7B119.00
C2A—C3A—C4A119.76 (16)C7A—C8A—H8A121.00
C2B—C3B—C4B119.51 (16)C9A—C8A—H8A121.00
C3A—C4A—C10A120.41 (17)C7B—C8B—H8B121.00
C3B—C4B—C10B120.86 (17)C9B—C8B—H8B121.00
C6A—C5A—C10A120.34 (18)S1—C1—C2123.06 (14)
C6B—C5B—C10B120.03 (17)S1—C1—C6121.54 (14)
C5A—C6A—C7A120.44 (17)C2—C1—C6114.77 (16)
C5B—C6B—C7B120.70 (17)N2—C2—C1121.68 (15)
C6A—C7A—C8A121.67 (16)N2—C2—C3115.28 (16)
C6B—C7B—C8B121.20 (16)C1—C2—C3123.04 (16)
C7A—C8A—C9A118.51 (17)C2—C3—C4118.32 (17)
C7B—C8B—C9B118.57 (17)N4—C4—C3118.03 (17)
C8A—C9A—C10A120.87 (16)N4—C4—C5119.17 (16)
N1A—C9A—C8A120.92 (16)C3—C4—C5122.80 (16)
N1A—C9A—C10A118.21 (15)C4—C5—C6116.46 (16)
N1B—C9B—C8B121.07 (16)N6—C6—C1120.05 (15)
N1B—C9B—C10B117.84 (15)N6—C6—C5115.32 (15)
C8B—C9B—C10B121.08 (16)C1—C6—C5124.54 (17)
C4A—C10A—C5A123.37 (17)C2—C3—H3121.00
C5A—C10A—C9A118.16 (16)C4—C3—H3121.00
C4A—C10A—C9A118.47 (16)C4—C5—H5122.00
C4B—C10B—C9B118.05 (16)C6—C5—H5122.00
O13—S1—C1—C6−138.21 (15)C3A—C4A—C10A—C9A2.5 (3)
O12—S1—C1—C2−89.31 (16)C3B—C4B—C10B—C5B178.54 (18)
O11—S1—C1—C2150.32 (15)C3B—C4B—C10B—C9B−0.4 (3)
O11—S1—C1—C6−20.10 (17)C6A—C5A—C10A—C4A−178.72 (18)
O12—S1—C1—C6100.27 (15)C6A—C5A—C10A—C9A0.9 (3)
O13—S1—C1—C232.21 (16)C10A—C5A—C6A—C7A−0.4 (3)
C9A—N1A—C2A—C21A−175.27 (16)C6B—C5B—C10B—C9B0.2 (3)
C9A—N1A—C2A—C3A2.3 (3)C10B—C5B—C6B—C7B−0.3 (3)
C2A—N1A—C9A—C10A−0.5 (3)C6B—C5B—C10B—C4B−178.74 (18)
C2A—N1A—C9A—C8A179.27 (17)C5A—C6A—C7A—C8A0.3 (3)
C9B—N1B—C2B—C3B−2.1 (3)C5B—C6B—C7B—C8B0.7 (3)
C2B—N1B—C9B—C10B2.9 (3)C6A—C7A—C8A—C9A−0.6 (3)
C9B—N1B—C2B—C21B177.93 (16)C6B—C7B—C8B—C9B−0.9 (3)
C2B—N1B—C9B—C8B−177.26 (17)C7A—C8A—C9A—C10A1.1 (3)
O21—N2—C2—C3−134.74 (17)C7A—C8A—C9A—N1A−178.59 (17)
O21—N2—C2—C144.5 (2)C7B—C8B—C9B—N1B−179.04 (17)
O22—N2—C2—C1−139.19 (17)C7B—C8B—C9B—C10B0.8 (3)
O22—N2—C2—C341.6 (2)N1A—C9A—C10A—C4A−1.9 (3)
O41—N4—C4—C3−15.1 (2)C8A—C9A—C10A—C5A−1.3 (3)
O42—N4—C4—C5−13.6 (2)N1A—C9A—C10A—C5A178.43 (16)
O41—N4—C4—C5165.55 (16)C8A—C9A—C10A—C4A178.37 (17)
O42—N4—C4—C3165.79 (16)N1B—C9B—C10B—C4B−1.6 (3)
O61—N6—C6—C1122.44 (18)N1B—C9B—C10B—C5B179.39 (16)
O62—N6—C6—C1−61.0 (2)C8B—C9B—C10B—C4B178.57 (17)
O62—N6—C6—C5115.70 (17)C8B—C9B—C10B—C5B−0.4 (3)
O61—N6—C6—C5−60.9 (2)S1—C1—C2—N211.3 (2)
N1A—C2A—C3A—C4A−1.6 (3)S1—C1—C2—C3−169.48 (14)
C21A—C2A—C3A—C4A175.71 (17)C6—C1—C2—N2−177.64 (15)
C3A—C2A—C21A—O22A−0.4 (2)C6—C1—C2—C31.5 (3)
N1A—C2A—C21A—O21A−1.6 (2)S1—C1—C6—N6−15.7 (2)
N1A—C2A—C21A—O22A177.05 (15)S1—C1—C6—C5167.94 (14)
C3A—C2A—C21A—O21A−178.99 (17)C2—C1—C6—N6173.10 (15)
N1B—C2B—C3B—C4B−0.2 (3)C2—C1—C6—C5−3.2 (3)
C21B—C2B—C3B—C4B179.87 (17)N2—C2—C3—C4−179.94 (15)
N1B—C2B—C21B—O21B6.2 (2)C1—C2—C3—C40.8 (3)
C3B—C2B—C21B—O22B6.6 (3)C2—C3—C4—N4178.82 (15)
C3B—C2B—C21B—O21B−173.77 (17)C2—C3—C4—C5−1.8 (3)
N1B—C2B—C21B—O22B−173.36 (16)N4—C4—C5—C6179.65 (15)
C2A—C3A—C4A—C10A−0.8 (3)C3—C4—C5—C60.3 (3)
C2B—C3B—C4B—C10B1.3 (3)C4—C5—C6—N6−174.09 (15)
C3A—C4A—C10A—C5A−177.87 (18)C4—C5—C6—C12.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1A···O21A0.87 (2)2.31 (2)2.690 (2)106.3 (18)
N1A—H1A···O21B0.87 (2)1.94 (2)2.761 (2)155 (2)
N1B—H1B···O130.85 (2)2.23 (2)2.8643 (19)132 (2)
N1B—H1B···O21A0.85 (2)2.14 (3)2.746 (2)128 (2)
N1B—H1B···O21B0.85 (2)2.30 (3)2.683 (2)108 (2)
O22A—H22A···O22Bi0.97 (2)1.50 (2)2.4711 (19)179 (3)
C4B—H4B···O41ii0.952.373.240 (2)152
C5B—H5B···O12iii0.952.443.339 (2)158
C8A—H8A···O21B0.952.393.122 (2)134

Symmetry codes: (i) x−1, y, z; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SF2012).

References

  • Bruker (1999). SADABS (Version 2.03) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr.34, 51–55.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Russell, V. A. & Ward, M. D. (1997). J. Mater. Chem.7, 1123–1133.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o5510–o5512.
  • Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem.60, 264–277.
  • Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694–o698. [PubMed]
  • Smith, G., Wermuth, U. D. & White, J. M. (2007). Unpublished data.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography