PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o128.
Published online 2007 December 6. doi:  10.1107/S1600536807043231
PMCID: PMC2915198

4-(3,4-Dichloro­phen­yl)-3,4-dihydronaphthalen-1(2H)-one

Abstract

The title compound, C16H12Cl2O, was synthesized from 1-naphthol and 1,2-dichloro­benzene with anhydrous aluminium chloride as a cataylst. In the mol­ecule, the two ring systems are approximately perpendicular to one other with a dihedral angle of 82.06 (4)°. There are two CH-type hydrogen bonds.

Related literature

Synthesis: Taber et al. (2004 [triangle]); Vukics et al. (2002 [triangle]); Quallich (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o128-scheme1.jpg

Experimental

Crystal data

  • C16H12Cl2O
  • M r = 291.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o128-efi1.jpg
  • a = 10.7705 (14) Å
  • b = 10.7317 (14) Å
  • c = 12.3765 (16) Å
  • β = 111.359 (6)°
  • V = 1332.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 113 (2) K
  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.903, T max = 0.920
  • 16212 measured reflections
  • 3172 independent reflections
  • 2676 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.085
  • S = 1.11
  • 3172 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: CHEMDRAW (Cambridgesoft, 2003 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks DS, I. DOI: 10.1107/S1600536807043231/fl2151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807043231/fl2151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation of China (No. 20576094)

supplementary crystallographic information

Comment

The title compound (I) is an intermediate for the synthesis of sertraline hydrochloride. Sertraline hydrochloride is an inhibitor of synaptosomal serotonin uptake makng it an important pharmaceutical agent for the treatment of depression and other anxiety-related disorders.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule, the angle between the two benzene ring planes is 82.06(0.04). In the molecule, the two ring systems are approximately perpendicular to one other with a dihedral angle of 82.06 (4). There are two CH type hydrogen bonds (Cl···H at 2.9Å and O..H of 2.4 Å).

Experimental

To a stirred solution of 1-naphthol(21.62 g, 0.15 mol) in 1,2-dichlorobenzene(160 ml) anhydrous AlCl3(53.3 g, 0.4 mol)was added. The reaction mixture was heated to 110¡ae and stirred at this temperature for 3 h. The mixture was then cooled to room temperature and poured into ice(300 g) and concentrated hydrochloric acid(80 ml), followed by addition of CH2Cl2(300 ml). The organic layer was separated, and washed with water(300 ml). The solvents were evaporated in vacuum. To the oily residue methanol(50 ml) was added. The product was crystallized, filtered,and then washed twice with methanol(50 ml). Yield:32.0 g(73.4%). (Taber et al., 2004; Vukics et al., 2002; Quallich, 2005). Crystals suitable for X-ray analysis were white by slow evaporation of an absolute methanol and acetone solution at room temperature over 15 days.

Refinement

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids.
Fig. 2.
The crystal structure of (I), viewed along a axis

Crystal data

C16H12Cl2OF000 = 600
Mr = 291.16Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71070 Å
a = 10.7705 (14) ÅCell parameters from 3625 reflections
b = 10.7317 (14) Åθ = 2.6–25.0º
c = 12.3765 (16) ŵ = 0.47 mm1
β = 111.359 (6)ºT = 113 (2) K
V = 1332.3 (3) Å3Prism, colorless
Z = 40.22 × 0.20 × 0.18 mm

Data collection

Rigaku Saturn diffractometer3172 independent reflections
Radiation source: rotating anode2676 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 27.9º
T = 113(2) Kθmin = 2.2º
ω scansh = −14→14
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −14→14
Tmin = 0.903, Tmax = 0.920l = −16→16
16212 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085  w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1288P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3172 reflectionsΔρmax = 0.44 e Å3
173 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.43486 (4)0.71805 (3)0.50411 (3)0.01997 (10)
Cl20.22276 (4)0.54210 (3)0.54838 (3)0.02382 (11)
O10.47445 (10)0.26530 (10)−0.12559 (9)0.0211 (2)
C10.45158 (13)0.30731 (13)−0.04246 (12)0.0154 (3)
C20.53907 (14)0.27547 (13)0.08047 (11)0.0180 (3)
H2A0.62170.32570.10240.022*
H2B0.56470.18660.08380.022*
C30.47278 (14)0.29863 (13)0.16876 (12)0.0180 (3)
H3A0.53830.28510.24820.022*
H3B0.39850.23910.15550.022*
C40.41922 (14)0.43295 (13)0.15738 (11)0.0155 (3)
H40.49670.48970.16930.019*
C50.32019 (13)0.45560 (12)0.03435 (11)0.0150 (3)
C60.33808 (13)0.39489 (12)−0.05995 (11)0.0148 (3)
C70.24896 (14)0.41618 (13)−0.17352 (12)0.0177 (3)
H70.26170.3743−0.23630.021*
C80.14277 (15)0.49738 (15)−0.19542 (13)0.0223 (3)
H80.08260.5114−0.27250.027*
C90.12560 (15)0.55839 (15)−0.10222 (13)0.0234 (3)
H90.05310.6144−0.11620.028*
C100.21314 (15)0.53833 (14)0.01059 (13)0.0201 (3)
H100.20020.58150.07270.024*
C110.36440 (14)0.46337 (13)0.25172 (11)0.0154 (3)
C120.41425 (13)0.56497 (13)0.32404 (11)0.0153 (3)
H120.47870.61760.31160.018*
C130.37027 (14)0.59043 (13)0.41504 (11)0.0151 (3)
C140.27583 (14)0.51357 (13)0.43366 (12)0.0167 (3)
C150.22341 (14)0.41266 (14)0.36055 (12)0.0187 (3)
H150.15810.36070.37240.022*
C160.26752 (14)0.38851 (14)0.26993 (12)0.0186 (3)
H160.23120.32010.21960.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0274 (2)0.01779 (18)0.01560 (17)−0.00214 (14)0.00882 (14)−0.00271 (13)
Cl20.0328 (2)0.0250 (2)0.02175 (19)0.00121 (15)0.01954 (16)0.00068 (14)
O10.0258 (6)0.0237 (5)0.0172 (5)0.0048 (4)0.0119 (4)−0.0016 (4)
C10.0169 (7)0.0145 (7)0.0163 (7)−0.0020 (5)0.0076 (6)−0.0007 (5)
C20.0203 (7)0.0187 (7)0.0160 (7)0.0050 (6)0.0079 (6)0.0009 (5)
C30.0217 (7)0.0196 (7)0.0136 (6)0.0034 (6)0.0074 (6)0.0020 (5)
C40.0175 (7)0.0178 (7)0.0125 (6)−0.0002 (5)0.0072 (5)−0.0010 (5)
C50.0166 (7)0.0155 (7)0.0141 (6)−0.0021 (5)0.0069 (5)0.0002 (5)
C60.0159 (7)0.0148 (7)0.0144 (6)−0.0018 (5)0.0064 (5)0.0004 (5)
C70.0190 (7)0.0204 (7)0.0150 (7)−0.0016 (6)0.0077 (6)−0.0022 (5)
C80.0199 (7)0.0300 (8)0.0147 (7)0.0035 (6)0.0034 (6)0.0018 (6)
C90.0213 (7)0.0267 (8)0.0222 (7)0.0091 (6)0.0079 (6)0.0019 (6)
C100.0231 (7)0.0225 (8)0.0167 (7)0.0040 (6)0.0097 (6)−0.0007 (6)
C110.0162 (6)0.0178 (7)0.0118 (6)0.0028 (5)0.0048 (5)0.0005 (5)
C120.0162 (7)0.0168 (7)0.0132 (6)0.0007 (5)0.0058 (5)0.0027 (5)
C130.0177 (7)0.0141 (6)0.0123 (6)0.0020 (5)0.0041 (5)0.0004 (5)
C140.0196 (7)0.0189 (7)0.0142 (7)0.0047 (6)0.0094 (6)0.0038 (5)
C150.0176 (7)0.0197 (7)0.0202 (7)−0.0017 (6)0.0084 (6)0.0020 (6)
C160.0184 (7)0.0204 (7)0.0162 (7)−0.0018 (6)0.0055 (6)−0.0024 (6)

Geometric parameters (Å, °)

Cl1—C131.7367 (14)C7—C81.384 (2)
Cl2—C141.7400 (14)C7—H70.9500
O1—C11.2276 (16)C8—C91.396 (2)
C1—C61.4939 (19)C8—H80.9500
C1—C21.5083 (19)C9—C101.388 (2)
C2—C31.5278 (18)C9—H90.9500
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—C121.3886 (19)
C3—C41.5399 (19)C11—C161.399 (2)
C3—H3A0.9900C12—C131.3985 (18)
C3—H3B0.9900C12—H120.9500
C4—C111.5234 (18)C13—C141.392 (2)
C4—C51.5272 (18)C14—C151.392 (2)
C4—H41.0000C15—C161.3924 (19)
C5—C101.399 (2)C15—H150.9500
C5—C61.4098 (18)C16—H160.9500
C6—C71.4024 (19)
O1—C1—C6120.86 (12)C6—C7—H7119.5
O1—C1—C2121.32 (12)C7—C8—C9118.83 (13)
C6—C1—C2117.79 (11)C7—C8—H8120.6
C1—C2—C3113.68 (11)C9—C8—H8120.6
C1—C2—H2A108.8C10—C9—C8120.84 (14)
C3—C2—H2A108.8C10—C9—H9119.6
C1—C2—H2B108.8C8—C9—H9119.6
C3—C2—H2B108.8C9—C10—C5121.05 (13)
H2A—C2—H2B107.7C9—C10—H10119.5
C2—C3—C4110.11 (11)C5—C10—H10119.5
C2—C3—H3A109.6C12—C11—C16118.89 (12)
C4—C3—H3A109.6C12—C11—C4119.70 (12)
C2—C3—H3B109.6C16—C11—C4121.37 (12)
C4—C3—H3B109.6C11—C12—C13120.51 (13)
H3A—C3—H3B108.2C11—C12—H12119.7
C11—C4—C5113.90 (11)C13—C12—H12119.7
C11—C4—C3111.55 (11)C14—C13—C12119.97 (13)
C5—C4—C3110.03 (11)C14—C13—Cl1120.66 (11)
C11—C4—H4107.0C12—C13—Cl1119.36 (11)
C5—C4—H4107.0C15—C14—C13120.07 (13)
C3—C4—H4107.0C15—C14—Cl2119.42 (11)
C10—C5—C6118.03 (12)C13—C14—Cl2120.51 (11)
C10—C5—C4122.23 (12)C14—C15—C16119.45 (13)
C6—C5—C4119.70 (12)C14—C15—H15120.3
C7—C6—C5120.29 (12)C16—C15—H15120.3
C7—C6—C1118.23 (12)C15—C16—C11121.08 (13)
C5—C6—C1121.48 (12)C15—C16—H16119.5
C8—C7—C6120.93 (13)C11—C16—H16119.5
C8—C7—H7119.5
O1—C1—C2—C3−160.86 (13)C8—C9—C10—C5−0.6 (2)
C6—C1—C2—C320.89 (17)C6—C5—C10—C91.2 (2)
C1—C2—C3—C4−52.96 (16)C4—C5—C10—C9179.15 (14)
C2—C3—C4—C11−174.50 (11)C5—C4—C11—C12−110.85 (14)
C2—C3—C4—C558.08 (15)C3—C4—C11—C12123.85 (14)
C11—C4—C5—C1023.18 (19)C5—C4—C11—C1671.33 (17)
C3—C4—C5—C10149.28 (13)C3—C4—C11—C16−53.97 (17)
C11—C4—C5—C6−158.88 (12)C16—C11—C12—C131.3 (2)
C3—C4—C5—C6−32.78 (16)C4—C11—C12—C13−176.57 (12)
C10—C5—C6—C7−1.1 (2)C11—C12—C13—C140.0 (2)
C4—C5—C6—C7−179.11 (12)C11—C12—C13—Cl1179.87 (11)
C10—C5—C6—C1178.62 (13)C12—C13—C14—C15−1.1 (2)
C4—C5—C6—C10.60 (19)Cl1—C13—C14—C15179.05 (11)
O1—C1—C6—C77.5 (2)C12—C13—C14—Cl2178.62 (10)
C2—C1—C6—C7−174.23 (12)Cl1—C13—C14—Cl2−1.21 (17)
O1—C1—C6—C5−172.20 (13)C13—C14—C15—C160.8 (2)
C2—C1—C6—C56.05 (19)Cl2—C14—C15—C16−178.90 (11)
C5—C6—C7—C80.5 (2)C14—C15—C16—C110.5 (2)
C1—C6—C7—C8−179.25 (13)C12—C11—C16—C15−1.6 (2)
C6—C7—C8—C90.1 (2)C4—C11—C16—C15176.25 (13)
C7—C8—C9—C100.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.403.3469 (17)172
C9—H9···Cl1ii0.952.913.6984 (16)142
C16—H16···Cl1iii0.952.913.7705 (15)151

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2151).

References

  • Cambridgesoft (2003). CHEMDRAW. Version 8.0. Cambridgesoft Corporation, Cambridge, MA, USA.
  • Quallich, J. Q. (2005). Chirality, 17, S120–S126.
  • Rigaku (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Taber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process. Res. Dev.8, 385–388.
  • Vukics, K., Fodor, T., Fischer, J., Fellegvari, I. & Leval, S. (2002). Org. Process. Res. Dev.6, 82–85.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography