PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o126.
Published online 2007 December 6. doi:  10.1107/S1600536807063064
PMCID: PMC2915196

3,7,11,19,23,27-Hexaaza­tricyclo­[27.3.1.113,17]tetra­triaconta-1(32),13,15,17(34),29(33),30-hexa­ene hexa­chloride tetra­hydrate

Abstract

The title compound, C28H52N6 6+·6Cl·4H2O, is a dinucleating 28-membered centrosymmetric hexa­azamacrocyclic complex. The macrocyclic ligand adopts a chair-like conformation, with the crystallographic inversion center located in the macrocyclic cavity. The six chloride ions and four water mol­ecules are situated symmetrically outside the macrocyclic cavity. The crystal structure is stabilized by N—H(...)Cl, N—H(...)O and O—H(...)Cl hydrogen bonds.

Related literature

For studies on hexa­azamacrocyclic complexes, see: Llobet et al. (1994 [triangle]). For related literature, see: Anda et al. (2000 [triangle]); Costas et al. (2004 [triangle]); Lu et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o126-scheme1.jpg

Experimental

Crystal data

  • C28H52N6 6+·6Cl·4H2O
  • M r = 757.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o126-efi1.jpg
  • a = 17.012 (7) Å
  • b = 7.469 (2) Å
  • c = 17.329 (7) Å
  • β = 113.841 (13)°
  • V = 2014.0 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 293 (2) K
  • 0.19 × 0.18 × 0.14 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (Higashi, 1995 [triangle]) T min = 0.895, T max = 0.932
  • 18546 measured reflections
  • 4594 independent reflections
  • 2416 reflections with I > 2σ(I)
  • R int = 0.102

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.130
  • S = 1.04
  • 4594 reflections
  • 235 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063064/ci2525sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063064/ci2525Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20060304) for supporting this work.

supplementary crystallographic information

Comment

It has been shown that macrocyclic polyamines have numerous advantages as enzyme models. They can participate in molecular recongnition phenomena with different kinds of substrates, such as organic, inorganic, and biologically important anions (Lu et al., 1995; Anda et al., 2000). In addition, hexaaza macrocycles can form dinuclear metal complexes which in turn are capable of coordinating anions (Costas et al., 2004). In this paper, the synthesis and the crystal structure of a hexaazamacrocyclic complex, L.6HCl.4H2O [L is 3,7,11,19, 23,27-hexaazztricyclo[27.3.1.113,17]tetratriaconta-1(32),13,15,17 (34),29 (33),30-hexaene] is presented.

The structure of the title compound is shown in Fig.1. It consists of a centrosymmetric hexaprotonated macrocycle, six chloride counterions, and four water molecules of crystallization. In the macrocycle, each of the aliphatic chains adopts a planar trans configuration, and each of the benzene rings is tilted from the mean plane of chains by 108.9 (1)°. All six N atoms are protonated with hydrogen atoms directed outside the ring. None of the chloride counterions are situated inside the macrocyclic cavity. The macrocycle adopts a chair conformation, similar to that observed in related compounds (Llobet et al., 1994). The crystal structure is stabilized by N—H···Cl, N—H···O and O—H···Cl hydrogen bonds (Table 1).

Experimental

A solution of 3,3'-iminobis(propylamine) (1.31 g, 10 mmol) in CH3OH (400 ml) was added dropwise from a dropping funnel to a stirred solution of 97% m-phthalaldehyde (1.34 g, 10 mmol) in CH3OH (400 ml) in a round-bottomed three-neck flask over 12 h at room temperature. Then the volume of the mixture was concentrated to 200 ml. NaBH4 (2 g) was added to the solution and the suspension was magnetically stirred for about 5 h at room temperature. The solvent was removed under reduced pressure, and the product was extracted with CH2Cl2 from an aqueous solution (CH2Cl2/H2O, 120 ml/50 ml). Evaporation of CH2Cl2 under reduced pressure yielded a colourless oil which was then dissolved in 50 ml of 8% HCl. The volume was reduced under low pressure until at approximately 5 ml, a white crystalline solid precipitated.

Refinement

N-bound H atoms were located in a difference map and refined freely; N—H distances involving atoms N1 and N3 were restrained to 0.85 (1) Å. H atoms bonded to water molecules were located in a difference Fourier map and refined isotropically, with distance restraints of O—H = 0.85 (1) Å and H···H = 1.30 (1) Å, and with Uiso(H) = 1.5 Ueq(O). C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 - x, -y, 1 - z.

Crystal data

C28H52N66+·6Cl·4H2OF000 = 808
Mr = 757.52Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4594 reflections
a = 17.012 (7) Åθ = 3.0–27.5º
b = 7.469 (2) ŵ = 0.46 mm1
c = 17.329 (7) ÅT = 293 (2) K
β = 113.841 (13)ºBlock, colourless
V = 2014.0 (13) Å30.19 × 0.18 × 0.15 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer4594 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.102
Detector resolution: 10.0 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.0º
ω scansh = −22→22
Absorption correction: multi-scan(Higashi, 1995)k = −9→8
Tmin = 0.895, Tmax = 0.932l = −22→22
18546 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130  w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1273P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4594 reflectionsΔρmax = 0.24 e Å3
235 parametersΔρmin = −0.26 e Å3
8 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.82877 (18)0.1791 (4)0.39938 (18)0.0355 (7)
C20.84179 (18)0.0147 (4)0.44031 (19)0.0368 (7)
H20.8105−0.08430.41150.044*
C30.90031 (19)−0.0047 (4)0.52305 (19)0.0350 (7)
C40.94848 (19)0.1433 (4)0.5644 (2)0.0400 (8)
H40.98900.13200.61960.048*
C50.9369 (2)0.3061 (4)0.5244 (2)0.0450 (8)
H50.96930.40440.55280.054*
C60.8769 (2)0.3245 (4)0.4419 (2)0.0420 (8)
H60.86920.43510.41510.050*
C70.76289 (18)0.1935 (5)0.30992 (19)0.0431 (8)
H7A0.78560.26860.27810.052*
H7B0.75270.07540.28450.052*
C80.63910 (18)0.1810 (4)0.35545 (18)0.0367 (7)
H8A0.67560.19540.41490.044*
H8B0.63290.05390.34280.044*
C90.55173 (19)0.2631 (4)0.33619 (19)0.0395 (8)
H9A0.55800.39110.34650.047*
H9B0.51490.24470.27710.047*
C100.51067 (18)0.1803 (4)0.39031 (19)0.0385 (7)
H10A0.50660.05170.38200.046*
H10B0.54600.20370.44930.046*
C110.37784 (18)0.1881 (4)0.41939 (19)0.0411 (8)
H11A0.40350.23920.47560.049*
H11B0.38380.05900.42450.049*
C120.28364 (19)0.2373 (4)0.3786 (2)0.0435 (8)
H12A0.27820.36450.36630.052*
H12B0.25660.17340.32560.052*
C130.23772 (18)0.1922 (4)0.4348 (2)0.0412 (8)
H13A0.25360.07280.45770.049*
H13B0.25440.27620.48140.049*
C140.08870 (19)0.1827 (4)0.4337 (2)0.0434 (8)
H14A0.02890.19770.39570.052*
H14B0.10330.27690.47570.052*
N10.67900 (17)0.2703 (4)0.30374 (17)0.0345 (6)
H1A0.683 (2)0.3817 (17)0.3174 (19)0.049 (10)*
H1B0.6425 (19)0.256 (4)0.2505 (19)0.037 (8)*
N20.42311 (16)0.2566 (4)0.36763 (17)0.0341 (6)
H2A0.4253 (18)0.375 (4)0.3706 (18)0.038 (9)*
H2B0.391 (2)0.238 (4)0.309 (2)0.052 (10)*
N30.14354 (16)0.2017 (4)0.38479 (18)0.0385 (6)
H3A0.129 (2)0.303 (2)0.3601 (18)0.053 (11)*
H3B0.130 (2)0.120 (3)0.3470 (14)0.046 (10)*
O1W0.2694 (2)0.7467 (6)0.4322 (2)0.1099 (12)
H1O0.226 (2)0.690 (7)0.400 (3)0.165*
H2O0.307 (2)0.711 (8)0.416 (4)0.165*
O2W0.09052 (17)−0.0279 (3)0.24667 (18)0.0595 (7)
H3O0.090 (3)−0.1386 (18)0.256 (3)0.089*
H4O0.0390 (11)0.005 (5)0.232 (3)0.089*
Cl10.43151 (6)0.67844 (11)0.38468 (5)0.0500 (2)
Cl20.68078 (6)0.68054 (11)0.32358 (5)0.0545 (3)
Cl30.10025 (6)0.55940 (11)0.28508 (6)0.0543 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0243 (15)0.0496 (19)0.0374 (16)0.0022 (15)0.0175 (13)0.0018 (15)
C20.0258 (15)0.0446 (18)0.0432 (17)−0.0034 (13)0.0172 (14)−0.0063 (15)
C30.0252 (15)0.0397 (17)0.0454 (18)0.0035 (13)0.0197 (14)0.0033 (15)
C40.0295 (16)0.054 (2)0.0393 (17)−0.0024 (15)0.0172 (14)0.0001 (16)
C50.0406 (19)0.0457 (19)0.0478 (19)−0.0110 (15)0.0169 (16)−0.0032 (16)
C60.0391 (18)0.0430 (18)0.0475 (19)−0.0013 (15)0.0213 (15)0.0061 (16)
C70.0331 (17)0.064 (2)0.0373 (17)0.0027 (16)0.0192 (14)−0.0028 (16)
C80.0329 (16)0.0444 (17)0.0362 (16)0.0022 (14)0.0174 (14)0.0044 (14)
C90.0350 (17)0.0436 (17)0.0449 (18)0.0044 (14)0.0210 (15)0.0038 (15)
C100.0293 (16)0.0456 (18)0.0400 (17)0.0042 (14)0.0133 (14)0.0056 (15)
C110.0302 (16)0.0512 (19)0.0434 (18)−0.0002 (15)0.0165 (14)0.0063 (16)
C120.0327 (17)0.053 (2)0.0496 (19)0.0028 (15)0.0213 (15)0.0107 (16)
C130.0279 (16)0.054 (2)0.0423 (17)−0.0007 (15)0.0151 (14)0.0043 (16)
C140.0343 (17)0.0475 (19)0.057 (2)0.0081 (15)0.0279 (16)0.0075 (16)
N10.0321 (14)0.0430 (17)0.0290 (14)−0.0003 (13)0.0130 (12)−0.0010 (13)
N20.0267 (14)0.0355 (15)0.0413 (16)−0.0016 (12)0.0152 (12)−0.0004 (13)
N30.0328 (14)0.0379 (16)0.0460 (16)0.0016 (13)0.0170 (13)0.0068 (15)
O1W0.077 (2)0.147 (3)0.101 (3)−0.015 (2)0.031 (2)−0.065 (2)
O2W0.0507 (16)0.0587 (15)0.0750 (17)−0.0019 (14)0.0317 (15)−0.0071 (15)
Cl10.0533 (5)0.0491 (5)0.0392 (4)−0.0022 (4)0.0098 (4)−0.0021 (4)
Cl20.0599 (6)0.0452 (5)0.0469 (5)−0.0075 (4)0.0096 (4)−0.0035 (4)
Cl30.0492 (5)0.0495 (5)0.0622 (6)−0.0017 (4)0.0206 (4)0.0085 (4)

Geometric parameters (Å, °)

C1—C61.380 (4)C11—N21.489 (4)
C1—C21.391 (4)C11—C121.512 (4)
C1—C71.505 (4)C11—H11A0.97
C2—C31.383 (4)C11—H11B0.97
C2—H20.93C12—C131.512 (4)
C3—C41.390 (4)C12—H12A0.97
C3—C14i1.500 (4)C12—H12B0.97
C4—C51.374 (4)C13—N31.483 (4)
C4—H40.93C13—H13A0.97
C5—C61.387 (4)C13—H13B0.97
C5—H50.93C14—N31.500 (4)
C6—H60.93C14—C3i1.500 (4)
C7—N11.501 (4)C14—H14A0.97
C7—H7A0.97C14—H14B0.97
C7—H7B0.97N1—H1A0.861 (10)
C8—N11.483 (4)N1—H1B0.89 (3)
C8—C91.515 (4)N2—H2A0.89 (3)
C8—H8A0.97N2—H2B0.95 (3)
C8—H8B0.97N3—H3A0.857 (10)
C9—C101.510 (4)N3—H3B0.857 (10)
C9—H9A0.97O1W—H1O0.84 (4)
C9—H9B0.97O1W—H2O0.84 (5)
C10—N21.492 (4)O2W—H3O0.841 (10)
C10—H10A0.97O2W—H4O0.84 (3)
C10—H10B0.97
C6—C1—C2119.0 (3)N2—C11—H11A109.7
C6—C1—C7121.9 (3)C12—C11—H11A109.7
C2—C1—C7119.1 (3)N2—C11—H11B109.7
C3—C2—C1121.4 (3)C12—C11—H11B109.7
C3—C2—H2119.3H11A—C11—H11B108.2
C1—C2—H2119.3C13—C12—C11111.7 (3)
C2—C3—C4118.6 (3)C13—C12—H12A109.3
C2—C3—C14i120.1 (3)C11—C12—H12A109.3
C4—C3—C14i121.3 (3)C13—C12—H12B109.3
C5—C4—C3120.7 (3)C11—C12—H12B109.3
C5—C4—H4119.7H12A—C12—H12B107.9
C3—C4—H4119.7N3—C13—C12109.3 (3)
C4—C5—C6120.2 (3)N3—C13—H13A109.8
C4—C5—H5119.9C12—C13—H13A109.8
C6—C5—H5119.9N3—C13—H13B109.8
C1—C6—C5120.2 (3)C12—C13—H13B109.8
C1—C6—H6119.9H13A—C13—H13B108.3
C5—C6—H6119.9N3—C14—C3i112.7 (2)
N1—C7—C1113.0 (2)N3—C14—H14A109.1
N1—C7—H7A109.0C3i—C14—H14A109.1
C1—C7—H7A109.0N3—C14—H14B109.1
N1—C7—H7B109.0C3i—C14—H14B109.1
C1—C7—H7B109.0H14A—C14—H14B107.8
H7A—C7—H7B107.8C8—N1—C7116.1 (2)
N1—C8—C9109.4 (2)C8—N1—H1A106 (2)
N1—C8—H8A109.8C7—N1—H1A112 (2)
C9—C8—H8A109.8C8—N1—H1B106 (2)
N1—C8—H8B109.8C7—N1—H1B106 (2)
C9—C8—H8B109.8H1A—N1—H1B110 (3)
H8A—C8—H8B108.2C11—N2—C10114.5 (2)
C10—C9—C8110.9 (2)C11—N2—H2A109 (2)
C10—C9—H9A109.5C10—N2—H2A110.6 (19)
C8—C9—H9A109.5C11—N2—H2B112 (2)
C10—C9—H9B109.5C10—N2—H2B108 (2)
C8—C9—H9B109.5H2A—N2—H2B102 (3)
H9A—C9—H9B108.1C13—N3—C14115.9 (3)
N2—C10—C9110.1 (2)C13—N3—H3A111 (2)
N2—C10—H10A109.6C14—N3—H3A104 (2)
C9—C10—H10A109.6C13—N3—H3B108 (2)
N2—C10—H10B109.6C14—N3—H3B109 (2)
C9—C10—H10B109.6H3A—N3—H3B108 (3)
H10A—C10—H10B108.2H1O—O1W—H2O102 (5)
N2—C11—C12110.0 (2)H3O—O2W—H4O105 (4)
C6—C1—C2—C31.6 (5)C2—C1—C7—N199.6 (3)
C7—C1—C2—C3−178.7 (3)N1—C8—C9—C10−177.8 (3)
C1—C2—C3—C4−2.0 (5)C8—C9—C10—N2−177.3 (2)
C1—C2—C3—C14i178.4 (3)N2—C11—C12—C13−172.3 (3)
C2—C3—C4—C51.4 (5)C11—C12—C13—N3−166.5 (3)
C14i—C3—C4—C5−179.1 (3)C9—C8—N1—C7−174.9 (2)
C3—C4—C5—C6−0.3 (5)C1—C7—N1—C8−53.3 (4)
C2—C1—C6—C5−0.5 (5)C12—C11—N2—C10−166.3 (3)
C7—C1—C6—C5179.8 (3)C9—C10—N2—C11−178.1 (3)
C4—C5—C6—C1−0.2 (5)C12—C13—N3—C14−172.8 (3)
C6—C1—C7—N1−80.7 (4)C3i—C14—N3—C13−62.0 (4)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.86 (2)2.24 (1)3.082 (3)168 (3)
N1—H1B···Cl1ii0.89 (3)2.24 (3)3.115 (3)169 (3)
O1W—H1O···Cl30.84 (4)2.46 (5)3.287 (4)169 (4)
N2—H2A···Cl10.89 (3)2.28 (3)3.162 (3)177 (3)
N2—H2B···Cl2ii0.95 (3)2.17 (3)3.113 (3)177 (3)
O1W—H2O···Cl10.84 (5)2.40 (5)3.222 (4)166 (5)
N3—H3A···Cl30.85 (2)2.25 (2)3.104 (3)173 (3)
N3—H3B···O2W0.86 (2)1.94 (2)2.782 (4)169 (2)
O2W—H3O···Cl3iii0.84 (2)2.30 (2)3.144 (3)176 (6)
O2W—H4O···Cl3iv0.84 (3)2.30 (3)3.133 (4)168 (4)

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2525).

References

  • Anda, C., Llobet, A., Salvado, V., Reibenspies, J., Motekaitis, R. J. & Martell, A. E. (2000). Inorg. Chem.39, 2986–2999. [PubMed]
  • Costas, M., Anda, C., Llobet, A., Parella, T., Evans, H. S. & Pinilla, E. (2004). Eur. J. Inorg. Chem. pp. 857–865.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Llobet, A., Reibenspies, J. & Martell, A. E. (1994). Inorg. Chem.33, 5946–5951.
  • Lu, Q., Motekaitis, R. J., Reibenspies, J. & Martell, A. E. (1995). Inorg. Chem.34, 4958–4964.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1990). SHELXTL-Plus Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography