PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o125.
Published online 2007 December 6. doi:  10.1107/S1600536807056292
PMCID: PMC2915195

3α,6α-Bis(ethoxy­carbon­yl)glycoluril (diethyl 2,5-dioxoperhydro­imidazo[4,5-d]imidazole-3a,6a-dicarboxyl­ate)

Abstract

The title compound, C10H14N4O6, crystallizes with two independent mol­ecules in the asymmetric unit. An extensive network of N—H(...)O and C—H(...)O inter­molecular hydrogen bonds stabilizes the crystal packing. One ethyl group is disordered over two positions; the site occupancy factors are 0.68 and 0.32.

Related literature

For related literature, see: Burnett et al. (2003 [triangle]); Chen et al. (2007 [triangle]); Himes et al. (1978 [triangle]); Hof et al. (2002 [triangle]); Isaacs & Witt (2002 [triangle]); Kim et al. (2000 [triangle]); Li et al. (1994 [triangle]); Moon et al. (2003 [triangle]); Rowan et al. (1999 [triangle]); Wang et al. (2006 [triangle], 2007 [triangle]); Wu et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o125-scheme1.jpg

Experimental

Crystal data

  • C10H14N4O6
  • M r = 286.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o125-efi1.jpg
  • a = 15.7555 (13) Å
  • b = 11.2726 (9) Å
  • c = 28.742 (2) Å
  • V = 5104.7 (7) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 292 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: none
  • 29774 measured reflections
  • 4501 independent reflections
  • 2784 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.197
  • S = 1.00
  • 4501 reflections
  • 385 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Bruker, 1997 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807056292/cv2340sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807056292/cv2340Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Central China Normal University for support.

supplementary crystallographic information

Comment

Glycoluril skeleton moiety (Fig. 3) is an important building block for both molecular and supramolecular chemistry. Its derivatives have been used as the basis for molecular capsules (Hof et al., 2002), molecular clips (Rowan et al., 1999), self-complementary facial amphiphiles (Isaacs et al., 2002), and the cucurbit[n]uril (CB[n]) family (Kim et al., 2000), and its utilization has been explored as a platform for studies of crystal engineering (Wang et al., 2006; Chen et al., 2007). However, relatively few crystal structures are known for glycoluril derivatives without N-substituents. The crystal structures of the reported glycoluril with different substituents exhibit two H-bonded types (Fig. 4). The mode A was found for (R=H) (Li et al., 1994), (R=CH3) (Himes et al., 1978), (I, R=Ph) (Wu et al., 2002), and so on, and the mode B was observed in the (R=Ph) (Moon et al., 2003), (R=COO-n-C3H7) (Wang et al., 2007). Herein, we report the crystal structure of the title compound (I), which exhibits the mode A of hydrogen bonding (Fig. 4).

The molecular structure of (I) (R=COOC2H5) is shown in Fig. 1. Its crystal structure exhibits the eight-membered rings H-bonding motifs (Fig. 4), which are entirely made up of NH···O=C(imidazolone rings) (Table 1). The two-dimension hydrogen bonding network is shown in Fig. 2, In addition, intermolecular C10—H10B···O11, C16—H16C···O3 interactions (Table 1) contribute to the crystal structure stability.

Experimental

The title compound was synthesized according to literature procedure (Burnett et al., 2003) in 62% isolated yield. Crystals appropriate for data collection were obtained by slow evaporation of CH3OH solution at room temperature.

Refinement

One ethyl group (C5—C6) was treted as disordered over two orientations with the occupancies refined to 0.683 (15) / 0.317 (15). All H-atoms were positioned geometrically (C—H 0.96, 0.97 Å; N—H 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq (parent atom).

Figures

Fig. 1.
The content of asymmetric unit of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. Atoms of the minor disorder components are omitted for clarity.
Fig. 2.
The partial hydrogen bonding network in the crystal structure of the title compound. H-bond drawn as dashed lines. 3α,6α- Diethoxylcarbonyl are omitted for simplicity.
Fig. 3.
The glycoluril skeleton moiety.
Fig. 4.
Hydrogen-bonding modes A and B.

Crystal data

C10H14N4O6F000 = 2400
Mr = 286.25Dx = 1.490 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2687 reflections
a = 15.7555 (13) Åθ = 2.6–23.5º
b = 11.2726 (9) ŵ = 0.12 mm1
c = 28.742 (2) ÅT = 292 (2) K
V = 5104.7 (7) Å3Block, colourless
Z = 160.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART 4K CCD area-detector diffractometer2784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.097
Monochromator: graphiteθmax = 25.0º
T = 292(2) Kθmin = 1.9º
[var phi] and ω scansh = −18→18
Absorption correction: nonek = −11→13
29774 measured reflectionsl = −34→29
4501 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.197  ?
S = 1.00(Δ/σ)max < 0.001
4501 reflectionsΔρmax = 0.37 e Å3
385 parametersΔρmin = −0.42 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.04208 (19)0.0660 (3)0.18565 (10)0.0315 (8)
C2−0.0170 (2)0.4006 (3)0.18911 (10)0.0340 (8)
C30.0813 (2)0.2558 (2)0.21072 (10)0.0304 (7)
C40.1717 (2)0.2877 (3)0.22674 (12)0.0458 (9)
C50.3149 (3)0.2426 (8)0.2249 (3)0.048 (2)0.683 (15)
H5A0.32780.23160.25760.058*0.683 (15)
H5B0.32330.32540.21700.058*0.683 (15)
C60.3700 (4)0.1644 (8)0.1953 (4)0.063 (3)0.683 (15)
H6A0.36010.08280.20330.095*0.683 (15)
H6B0.42860.18350.20070.095*0.683 (15)
H6C0.35660.17670.16310.095*0.683 (15)
C5'0.3127 (6)0.169 (2)0.2260 (7)0.082 (7)0.317 (15)
H5'10.31730.08330.22570.098*0.317 (15)
H5'20.32780.19700.25690.098*0.317 (15)
C6'0.3725 (8)0.223 (2)0.1899 (9)0.126 (12)0.317 (15)
H6'10.36410.18390.16050.190*0.317 (15)
H6'20.43020.21220.19970.190*0.317 (15)
H6'30.36070.30590.18660.190*0.317 (15)
C70.0685 (2)0.2544 (2)0.15577 (10)0.0314 (8)
C80.1431 (2)0.2921 (3)0.12516 (13)0.0504 (10)
C90.2477 (3)0.4440 (4)0.11294 (16)0.0836 (15)
H9A0.28280.49320.13290.100*
H9B0.28300.38150.10010.100*
C100.2119 (3)0.5147 (4)0.07577 (17)0.0965 (17)
H10A0.18350.46380.05400.145*
H10B0.25650.55690.06010.145*
H10C0.17210.57040.08850.145*
C110.4936 (2)0.4078 (3)0.06138 (11)0.0347 (8)
C120.52703 (19)0.0688 (3)0.06489 (10)0.0301 (7)
C130.56575 (19)0.2511 (2)0.09612 (10)0.0296 (7)
C140.6371 (2)0.2861 (3)0.12889 (12)0.0420 (9)
C150.7460 (3)0.4299 (4)0.14264 (16)0.0771 (14)
H15A0.76560.37260.16540.093*
H15B0.79440.45440.12410.093*
C160.7102 (3)0.5323 (4)0.16631 (17)0.0867 (16)
H16A0.69130.58920.14370.130*
H16B0.75260.56780.18580.130*
H16C0.66290.50760.18500.130*
C170.5822 (2)0.2525 (2)0.04197 (10)0.0296 (7)
C180.6762 (2)0.2567 (3)0.02697 (11)0.0391 (8)
C190.8066 (2)0.1494 (4)0.02685 (19)0.0847 (16)
H19A0.81210.1722−0.00560.102*
H19B0.82370.06710.02960.102*
C200.8641 (3)0.2246 (4)0.05570 (17)0.0871 (16)
H20A0.85120.30680.05050.131*
H20B0.92200.20940.04710.131*
H20C0.85610.20600.08800.131*
N10.05846 (16)0.1358 (2)0.22301 (8)0.0332 (7)
H10.05550.11100.25130.040*
N20.04634 (17)0.1327 (2)0.14663 (8)0.0367 (7)
H20.03680.10530.11920.044*
N30.02328 (17)0.3466 (2)0.22512 (9)0.0389 (7)
H30.01480.36500.25380.047*
N40.00082 (17)0.3390 (2)0.14951 (9)0.0377 (7)
H4−0.02540.34950.12360.045*
N50.49893 (16)0.3389 (2)0.09994 (9)0.0361 (7)
H50.46650.34630.12380.043*
N60.53960 (17)0.3573 (2)0.02693 (9)0.0375 (7)
H60.54280.3853−0.00090.045*
N70.54036 (16)0.1301 (2)0.10487 (8)0.0341 (7)
H70.53440.10030.13220.041*
N80.54353 (16)0.1409 (2)0.02829 (8)0.0334 (7)
H80.53230.1225−0.00010.040*
O10.02606 (15)−0.04068 (18)0.18682 (7)0.0417 (6)
O2−0.06149 (16)0.48901 (19)0.19152 (7)0.0439 (6)
O30.18984 (19)0.3785 (3)0.24553 (10)0.0773 (9)
O40.22562 (15)0.2053 (3)0.21459 (10)0.0647 (8)
O50.17702 (17)0.3914 (2)0.14036 (9)0.0619 (8)
O60.1614 (3)0.2417 (2)0.09063 (13)0.1284 (18)
O70.45447 (16)0.50226 (19)0.05859 (8)0.0480 (7)
O80.50442 (15)−0.03524 (18)0.06237 (7)0.0413 (6)
O90.6426 (2)0.2439 (2)0.16701 (10)0.0796 (10)
O100.68161 (17)0.3742 (2)0.11215 (9)0.0650 (8)
O110.70598 (17)0.3366 (2)0.00593 (10)0.0706 (9)
O120.71686 (14)0.1612 (2)0.04116 (10)0.0616 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0399 (18)0.0296 (18)0.0250 (18)−0.0046 (15)0.0030 (14)0.0008 (14)
C20.048 (2)0.0267 (18)0.0273 (18)−0.0013 (15)0.0036 (15)−0.0002 (14)
C30.0477 (19)0.0223 (16)0.0212 (17)−0.0032 (14)0.0050 (14)−0.0020 (13)
C40.054 (2)0.049 (2)0.034 (2)−0.011 (2)−0.0007 (17)0.0040 (18)
C50.036 (3)0.051 (5)0.056 (4)−0.007 (3)−0.010 (3)−0.007 (4)
C60.032 (4)0.059 (6)0.099 (6)−0.007 (3)−0.006 (4)−0.025 (5)
C5'0.098 (15)0.050 (12)0.098 (14)−0.022 (11)−0.021 (11)0.007 (11)
C6'0.16 (2)0.080 (18)0.14 (2)−0.066 (16)0.005 (16)−0.046 (18)
C70.0505 (19)0.0201 (16)0.0237 (18)−0.0023 (14)0.0048 (14)0.0012 (13)
C80.080 (3)0.0243 (18)0.047 (2)−0.0075 (18)0.028 (2)0.0016 (17)
C90.093 (3)0.084 (3)0.074 (3)−0.043 (3)0.018 (3)0.020 (3)
C100.116 (4)0.104 (4)0.070 (3)−0.037 (3)0.014 (3)0.021 (3)
C110.051 (2)0.0272 (18)0.0262 (18)0.0004 (16)−0.0031 (15)−0.0002 (14)
C120.0422 (18)0.0244 (17)0.0236 (17)0.0001 (14)0.0001 (14)−0.0021 (13)
C130.0467 (19)0.0227 (16)0.0193 (16)0.0016 (14)−0.0029 (14)0.0000 (13)
C140.068 (2)0.0253 (17)0.033 (2)0.0008 (17)−0.0117 (18)−0.0028 (16)
C150.075 (3)0.091 (3)0.065 (3)−0.045 (3)−0.010 (2)−0.018 (3)
C160.126 (5)0.066 (3)0.068 (3)−0.024 (3)−0.025 (3)0.002 (3)
C170.0462 (18)0.0217 (16)0.0209 (17)−0.0002 (14)−0.0021 (14)−0.0014 (12)
C180.051 (2)0.036 (2)0.030 (2)−0.0069 (17)0.0047 (16)−0.0019 (16)
C190.055 (3)0.075 (3)0.124 (4)0.008 (2)0.019 (3)−0.028 (3)
C200.054 (3)0.119 (4)0.088 (4)−0.010 (3)0.007 (2)−0.002 (3)
N10.0568 (17)0.0260 (14)0.0167 (13)−0.0072 (12)0.0020 (12)0.0029 (11)
N20.0675 (19)0.0236 (14)0.0190 (14)−0.0060 (13)0.0017 (13)−0.0022 (11)
N30.0638 (18)0.0330 (16)0.0200 (15)0.0150 (14)0.0035 (13)−0.0003 (12)
N40.0609 (18)0.0311 (15)0.0210 (14)0.0071 (13)−0.0028 (13)−0.0015 (12)
N50.0539 (17)0.0299 (15)0.0244 (15)0.0095 (13)0.0050 (12)0.0032 (12)
N60.0602 (18)0.0292 (15)0.0231 (15)0.0072 (13)0.0018 (13)0.0023 (12)
N70.0615 (18)0.0248 (14)0.0160 (13)−0.0035 (13)−0.0016 (12)0.0017 (11)
N80.0534 (17)0.0297 (14)0.0170 (13)−0.0078 (12)−0.0035 (12)−0.0005 (11)
O10.0726 (17)0.0228 (12)0.0297 (13)−0.0122 (11)0.0029 (11)0.0000 (10)
O20.0629 (16)0.0333 (13)0.0355 (14)0.0145 (12)0.0033 (11)−0.0008 (10)
O30.098 (2)0.0696 (19)0.065 (2)−0.0339 (17)−0.0148 (17)−0.0141 (17)
O40.0439 (15)0.079 (2)0.071 (2)0.0037 (15)−0.0027 (14)−0.0057 (17)
O50.0844 (19)0.0537 (16)0.0475 (16)−0.0306 (14)0.0233 (14)0.0021 (13)
O60.202 (4)0.067 (2)0.117 (3)−0.056 (2)0.124 (3)−0.054 (2)
O70.0780 (18)0.0339 (14)0.0320 (13)0.0195 (13)−0.0011 (12)0.0031 (11)
O80.0710 (16)0.0255 (13)0.0273 (12)−0.0093 (11)−0.0039 (11)−0.0007 (10)
O90.133 (3)0.0509 (17)0.0548 (19)−0.0262 (17)−0.0532 (19)0.0164 (14)
O100.0821 (19)0.0751 (18)0.0378 (15)−0.0376 (16)−0.0125 (14)0.0008 (14)
O110.0692 (19)0.083 (2)0.0593 (19)−0.0114 (16)0.0114 (15)0.0253 (16)
O120.0470 (16)0.0454 (15)0.092 (2)0.0059 (12)0.0072 (14)−0.0009 (15)

Geometric parameters (Å, °)

C1—O11.229 (4)C11—N61.352 (4)
C1—N21.352 (4)C11—N51.357 (4)
C1—N11.356 (4)C12—O81.228 (3)
C2—O21.220 (4)C12—N81.355 (4)
C2—N31.358 (4)C12—N71.357 (4)
C2—N41.362 (4)C13—N71.444 (3)
C3—N31.433 (4)C13—N51.449 (4)
C3—N11.443 (3)C13—C141.519 (4)
C3—C41.541 (5)C13—C171.578 (4)
C3—C71.592 (4)C14—O91.198 (4)
C4—O31.191 (4)C14—O101.308 (4)
C4—O41.307 (4)C15—C161.455 (6)
C5—O41.497 (5)C15—O101.481 (4)
C5—C61.502 (7)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C16—H16A0.9600
C6—H6A0.9600C16—H16B0.9600
C6—H6B0.9600C16—H16C0.9600
C6—H6C0.9600C17—N61.426 (4)
C5'—O41.469 (9)C17—N81.452 (3)
C5'—C6'1.527 (10)C17—C181.543 (5)
C5'—H5'10.9700C18—O111.182 (4)
C5'—H5'20.9700C18—O121.317 (4)
C6'—H6'10.9600C19—O121.478 (4)
C6'—H6'20.9600C19—C201.493 (6)
C6'—H6'30.9600C19—H19A0.9700
C7—N21.440 (3)C19—H19B0.9700
C7—N41.442 (4)C20—H20A0.9600
C7—C81.529 (4)C20—H20B0.9600
C8—O61.179 (4)C20—H20C0.9600
C8—O51.314 (4)N1—H10.8600
C9—C101.448 (6)N2—H20.8600
C9—O51.488 (4)N3—H30.8600
C9—H9A0.9700N4—H40.8600
C9—H9B0.9700N5—H50.8600
C10—H10A0.9600N6—H60.8600
C10—H10B0.9600N7—H70.8600
C10—H10C0.9600N8—H80.8600
C11—O71.233 (4)
O1—C1—N2125.2 (3)O9—C14—O10126.8 (3)
O1—C1—N1125.8 (3)O9—C14—C13121.2 (3)
N2—C1—N1108.9 (3)O10—C14—C13111.5 (3)
O2—C2—N3126.2 (3)C16—C15—O10110.3 (4)
O2—C2—N4125.6 (3)C16—C15—H15A109.6
N3—C2—N4108.2 (3)O10—C15—H15A109.6
N3—C3—N1116.1 (3)C16—C15—H15B109.6
N3—C3—C4109.7 (3)O10—C15—H15B109.6
N1—C3—C4112.1 (3)H15A—C15—H15B108.1
N3—C3—C7102.3 (2)C15—C16—H16A109.5
N1—C3—C7101.7 (2)C15—C16—H16B109.5
C4—C3—C7114.6 (2)H16A—C16—H16B109.5
O3—C4—O4125.2 (4)C15—C16—H16C109.5
O3—C4—C3123.9 (3)H16A—C16—H16C109.5
O4—C4—C3110.8 (3)H16B—C16—H16C109.5
O4—C5—C6105.5 (5)N6—C17—N8116.0 (2)
O4—C5—H5A110.6N6—C17—C18110.0 (3)
C6—C5—H5A110.6N8—C17—C18110.7 (2)
O4—C5—H5B110.6N6—C17—C13103.3 (2)
C6—C5—H5B110.6N8—C17—C13100.9 (2)
H5A—C5—H5B108.8C18—C17—C13115.7 (2)
O4—C5'—C6'108.3 (9)O11—C18—O12126.0 (3)
O4—C5'—H5'1110.0O11—C18—C17123.2 (3)
C6'—C5'—H5'1110.0O12—C18—C17110.9 (3)
O4—C5'—H5'2110.0O12—C19—C20112.0 (4)
C6'—C5'—H5'2110.0O12—C19—H19A109.2
H5'1—C5'—H5'2108.4C20—C19—H19A109.2
C5'—C6'—H6'1109.5O12—C19—H19B109.2
C5'—C6'—H6'2109.5C20—C19—H19B109.2
H6'1—C6'—H6'2109.5H19A—C19—H19B107.9
C5'—C6'—H6'3109.5C19—C20—H20A109.5
H6'1—C6'—H6'3109.5C19—C20—H20B109.5
H6'2—C6'—H6'3109.5H20A—C20—H20B109.5
N2—C7—N4115.3 (3)C19—C20—H20C109.5
N2—C7—C8110.3 (3)H20A—C20—H20C109.5
N4—C7—C8108.2 (2)H20B—C20—H20C109.5
N2—C7—C3102.8 (2)C1—N1—C3113.4 (2)
N4—C7—C3102.2 (2)C1—N1—H1123.3
C8—C7—C3118.1 (3)C3—N1—H1123.3
O6—C8—O5126.2 (3)C1—N2—C7113.0 (2)
O6—C8—C7122.6 (3)C1—N2—H2123.5
O5—C8—C7111.0 (3)C7—N2—H2123.5
C10—C9—O5108.6 (4)C2—N3—C3113.5 (2)
C10—C9—H9A110.0C2—N3—H3123.3
O5—C9—H9A110.0C3—N3—H3123.3
C10—C9—H9B110.0C2—N4—C7112.7 (3)
O5—C9—H9B110.0C2—N4—H4123.7
H9A—C9—H9B108.4C7—N4—H4123.7
C9—C10—H10A109.5C11—N5—C13112.0 (2)
C9—C10—H10B109.5C11—N5—H5124.0
H10A—C10—H10B109.5C13—N5—H5124.0
C9—C10—H10C109.5C11—N6—C17112.3 (2)
H10A—C10—H10C109.5C11—N6—H6123.9
H10B—C10—H10C109.5C17—N6—H6123.9
O7—C11—N6125.7 (3)C12—N7—C13112.1 (2)
O7—C11—N5125.4 (3)C12—N7—H7124.0
N6—C11—N5108.9 (3)C13—N7—H7124.0
O8—C12—N8125.7 (3)C12—N8—C17113.0 (2)
O8—C12—N7125.5 (3)C12—N8—H8123.5
N8—C12—N7108.8 (2)C17—N8—H8123.5
N7—C13—N5115.5 (3)C4—O4—C5'138.1 (10)
N7—C13—C14110.0 (2)C4—O4—C5111.0 (4)
N5—C13—C14108.2 (2)C5'—O4—C532.5 (7)
N7—C13—C17103.1 (2)C8—O5—C9117.9 (3)
N5—C13—C17100.8 (2)C14—O10—C15118.2 (3)
C14—C13—C17119.2 (3)C18—O12—C19116.9 (3)
N3—C3—C4—O3−4.5 (5)C8—C7—N2—C1128.3 (3)
N1—C3—C4—O3−134.9 (3)C3—C7—N2—C11.5 (3)
C7—C3—C4—O3109.9 (4)O2—C2—N3—C3−170.9 (3)
N3—C3—C4—O4179.0 (3)N4—C2—N3—C39.1 (4)
N1—C3—C4—O448.6 (4)N1—C3—N3—C2−112.5 (3)
C7—C3—C4—O4−66.6 (4)C4—C3—N3—C2119.2 (3)
N3—C3—C7—N2−123.9 (2)C7—C3—N3—C2−2.8 (3)
N1—C3—C7—N2−3.6 (3)O2—C2—N4—C7167.8 (3)
C4—C3—C7—N2117.5 (3)N3—C2—N4—C7−12.1 (4)
N3—C3—C7—N4−4.0 (3)N2—C7—N4—C2120.5 (3)
N1—C3—C7—N4116.3 (2)C8—C7—N4—C2−115.5 (3)
C4—C3—C7—N4−122.6 (3)C3—C7—N4—C29.8 (3)
N3—C3—C7—C8114.5 (3)O7—C11—N5—C13−165.3 (3)
N1—C3—C7—C8−125.2 (3)N6—C11—N5—C1313.4 (4)
C4—C3—C7—C8−4.1 (4)N7—C13—N5—C11−127.2 (3)
N2—C7—C8—O620.6 (5)C14—C13—N5—C11109.0 (3)
N4—C7—C8—O6−106.4 (5)C17—C13—N5—C11−16.9 (3)
C3—C7—C8—O6138.3 (4)O7—C11—N6—C17175.8 (3)
N2—C7—C8—O5−165.0 (3)N5—C11—N6—C17−2.9 (4)
N4—C7—C8—O568.0 (4)N8—C17—N6—C11101.9 (3)
C3—C7—C8—O5−47.4 (4)C18—C17—N6—C11−131.5 (3)
N7—C13—C14—O9−30.6 (4)C13—C17—N6—C11−7.4 (3)
N5—C13—C14—O996.5 (4)O8—C12—N7—C13−179.4 (3)
C17—C13—C14—O9−149.3 (3)N8—C12—N7—C131.2 (3)
N7—C13—C14—O10157.0 (3)N5—C13—N7—C1299.5 (3)
N5—C13—C14—O10−75.9 (3)C14—C13—N7—C12−137.6 (3)
C17—C13—C14—O1038.3 (4)C17—C13—N7—C12−9.5 (3)
N7—C13—C17—N6133.5 (2)O8—C12—N8—C17−170.5 (3)
N5—C13—C17—N613.9 (3)N7—C12—N8—C178.9 (4)
C14—C13—C17—N6−104.2 (3)N6—C17—N8—C12−124.7 (3)
N7—C13—C17—N813.3 (3)C18—C17—N8—C12109.1 (3)
N5—C13—C17—N8−106.4 (2)C13—C17—N8—C12−13.9 (3)
C14—C13—C17—N8135.5 (3)O3—C4—O4—C5'18.8 (11)
N7—C13—C17—C18−106.2 (3)C3—C4—O4—C5'−164.8 (9)
N5—C13—C17—C18134.2 (3)O3—C4—O4—C5−3.3 (6)
C14—C13—C17—C1816.0 (4)C3—C4—O4—C5173.1 (4)
N6—C17—C18—O11−0.3 (4)C6'—C5'—O4—C4−96 (2)
N8—C17—C18—O11129.2 (3)C6'—C5'—O4—C5−55.2 (16)
C13—C17—C18—O11−116.8 (4)C6—C5—O4—C4−160.8 (7)
N6—C17—C18—O12179.1 (3)C6—C5—O4—C5'47.1 (14)
N8—C17—C18—O12−51.4 (3)O6—C8—O5—C9−2.7 (7)
C13—C17—C18—O1262.6 (3)C7—C8—O5—C9−176.8 (3)
O1—C1—N1—C3175.7 (3)C10—C9—O5—C884.3 (5)
N2—C1—N1—C3−4.2 (4)O9—C14—O10—C15−0.1 (6)
N3—C3—N1—C1114.9 (3)C13—C14—O10—C15171.7 (3)
C4—C3—N1—C1−118.0 (3)C16—C15—O10—C14−94.1 (4)
C7—C3—N1—C14.8 (3)O11—C18—O12—C19−4.2 (5)
O1—C1—N2—C7−178.5 (3)C17—C18—O12—C19176.4 (3)
N1—C1—N2—C71.4 (4)C20—C19—O12—C1878.4 (5)
N4—C7—N2—C1−108.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.963 (3)158
N2—H2···O7ii0.862.102.927 (3)162
N3—H3···O1iii0.862.112.937 (3)161
N4—H4···O8iv0.862.212.879 (3)134
N5—H5···O1iv0.862.222.870 (3)133
N6—H6···O7v0.862.092.925 (3)164
N7—H7···O2ii0.862.162.973 (3)158
N8—H8···O8vi0.862.122.963 (3)165
C16—H16C···O3vii0.962.513.087 (5)119
C10—H10B···O11v0.962.323.162 (5)146

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y−1/2, z; (iii) −x, y+1/2, −z+1/2; (iv) −x+1/2, y+1/2, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y, −z; (vii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2340).

References

  • Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, C. A., Lagona, J., Wu, A. X., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961–1970.
  • Chen, Y. F., She, N. F., Meng, X. G., Yin, G. D., Wu, A. X. & Isaacs, L. (2007). Org. Lett.9, 1899–1902. [PubMed]
  • Himes, V. L., Hubbard, C. R., Mighell, A. D. & Fatiadi, A. J.(1978). Acta Cryst. B34, 3102–3104.
  • Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed.41, 1488–1508. [PubMed]
  • Isaacs, L. & Witt, D. (2002). Angew. Chem. Int. Ed.41, 1905–1907. [PubMed]
  • Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc.122, 540–541.
  • Li, N., Maluendes, S., Blessing, R. H., Dupuis, M., Moss, G. R. & Detitta, G. T. (1994). J. Am. Chem. Soc.116, 6494–6507.
  • Moon, K., Chen, W. Z., Ren, T. & Kaifer, A. E. (2003). CrystEngComm, 5, 451–453.
  • Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res.32, 995–1006.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, Y.-Z., Gao, M. & Cao, L.-P. (2007). Acta Cryst. E63, o3419.
  • Wang, Z. G., Zhou, B. H., Chen, Y. F., Yin, G. D., Li, Y. T., Wu, A. X. & Isaacs, L. (2006). J. Org. Chem.71, 4502–4508. [PubMed]
  • Wu, A. X., Fettinger, J. C. & Isaacs, L. (2002). Tetrahedron, 58, 9769–9777.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography