PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o114.
Published online 2007 December 6. doi:  10.1107/S1600536807062125
PMCID: PMC2915185

N-Butyl­pyridine-4-thio­carboxamide

Abstract

In the title mol­ecule, C10H14N2S, the n-butyl chain assumes a trans zigzag conformation. The dihedral angle between the pyridine ring and the thio­amide plane is 23.38 (8)°. The mol­ecules in the crystal structure are linked by an inter­molecular N—H(...)N hydrogen bond.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Klimsova et al. (1999 [triangle]); Ramachandran (2005 [triangle]); Vannelli et al. (2002 [triangle]); Desiraju (1989 [triangle]); Dodge et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o114-scheme1.jpg

Experimental

Crystal data

  • C10H14N2S
  • M r = 194.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o114-efi1.jpg
  • a = 8.0895 (3) Å
  • b = 13.5947 (4) Å
  • c = 10.4936 (3) Å
  • β = 111.895 (2)°
  • V = 1070.78 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 (2) K
  • 0.26 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.935, T max = 0.949
  • 11437 measured reflections
  • 2182 independent reflections
  • 1744 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.120
  • S = 1.06
  • 2182 reflections
  • 122 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062125/is2253sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062125/is2253Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AD, MH and CR are grateful to Rev. Fr A. Albert Muthumali S. J., Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities.

supplementary crystallographic information

Comment

Drugs containing carbothioamide (–CSNH2) functional groups are clinically effective for the treatment of M. tuberculosis, M. leprae and M. avium complex infections (Dodge et al., 2006; Klimsova et al., 1999). In general, the carbothioamide drugs are considered as second line drugs. The carbothioamide groups have significant effects in biological systems. Their use, especially as pyridine carbothioamides in the field of multi drug resistant systems, has increased a lot (Vannelli et al., 2002). Depending on the position of the carbothioamide group at the pyridine ring and also depending on the nature of N-alkyl substitution at the thioamide, the pyridine carbothioamides have been found to play a vital role in their biological activities and drug action. We report here the crystal structure of a typical pyridinecarbothioamide, viz., 4-(N-1-butylcarbothioamido) pyridine.

The pyridine ring is planar. The n-butyl amide group assumes an extended conformation [C4—C7—N8—C9 = -178.06 (15)°, C7—N8—C9—C10 = -168.50 (16)°, N8—C9—C10—C11 = -178.86 (16)°, C9—C10—C11—C12 = -171.50 (18)°]. The C=S bond length [1.6608 (16) Å] is comparable with the literature values (Allen et al., 1987). The pyridine and thioamide planes orient at an angle of 23.38 (8)° to each other.

The sum of the bond angles around N8 is 359.94 (4)° thus conforming sp2 hybridized state of N atom. The molecules in the unit cell are stabilized by N—H···N (Desiraju, 1989) type of intermolecular interactions in addition to van der Waal's forces.

Experimental

About 5 g of 4- pyridinecarbonitrile was dissolved in 15 ml of ethanol. To this about 10 ml of 1-aminobutane was added and purified and H2S gas was passed for 3 h. The yellow solid separate was filtered, washed with ethanol and dried in vacuum desicator (yield 80%) (Ramachandran, 2005).

Refinement

The H atom associated with N atom was located in a difference Fourier map and refined isotropically. Other H atoms were geometrically positioned (C—H = 0.93 - 0.97 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 20% probability displacement ellipsoids.
Fig. 2.
A packing diagram, viewed approximately along the a axis. Dashed lines indicated N—H···N hydrogen bonds.

Crystal data

C10H14N2SF000 = 416
Mr = 194.29Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2182 reflections
a = 8.0895 (3) Åθ = 2.6–26.3º
b = 13.5947 (4) ŵ = 0.26 mm1
c = 10.4936 (3) ÅT = 293 (2) K
β = 111.895 (2)ºBlock, brown
V = 1070.78 (6) Å30.26 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII kappa diffractometer2182 independent reflections
Radiation source: fine-focus sealed tube1744 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 293(2) Kθmax = 26.3º
[var phi] and ω scanθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −9→10
Tmin = 0.935, Tmax = 0.949k = −15→16
11437 measured reflectionsl = −13→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120  w = 1/[σ2(Fo2) + (0.0579P)2 + 0.2939P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2182 reflectionsΔρmax = 0.37 e Å3
122 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H80.753 (2)−0.0813 (14)0.501 (2)0.055 (5)*
C20.6652 (3)−0.27758 (12)0.74847 (18)0.0533 (4)
H20.5953−0.33020.70160.064*
C30.6682 (2)−0.19391 (12)0.67438 (17)0.0461 (4)
H30.6041−0.19170.58020.055*
C40.7670 (2)−0.11385 (11)0.74138 (15)0.0406 (4)
C50.8613 (3)−0.12389 (14)0.88113 (18)0.0561 (5)
H50.9304−0.07210.93120.067*
C60.8525 (3)−0.21036 (14)0.94534 (19)0.0606 (5)
H60.9185−0.21541.03900.073*
C70.7739 (2)−0.01937 (11)0.67065 (17)0.0446 (4)
C90.7746 (3)0.06103 (12)0.46367 (18)0.0519 (4)
H9A0.89540.08640.50050.062*
H9B0.69650.11160.47480.062*
C100.7241 (3)0.04039 (12)0.31368 (18)0.0514 (4)
H10A0.60220.01680.27540.062*
H10B0.8008−0.01070.30170.062*
C110.7414 (3)0.13253 (14)0.23755 (19)0.0590 (5)
H11A0.67970.18620.26180.071*
H11B0.86630.15030.26730.071*
C120.6671 (4)0.1204 (2)0.0840 (2)0.0914 (8)
H12A0.68220.18060.04170.137*
H12B0.54270.10460.05330.137*
H12C0.72920.06830.05900.137*
N10.7559 (2)−0.28736 (10)0.88235 (15)0.0544 (4)
N80.7638 (2)−0.02581 (10)0.54257 (14)0.0450 (3)
S10.79203 (10)0.08676 (3)0.75316 (5)0.0775 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0742 (12)0.0386 (9)0.0445 (10)−0.0106 (8)0.0193 (9)−0.0039 (7)
C30.0591 (10)0.0420 (8)0.0351 (8)−0.0019 (7)0.0152 (7)−0.0010 (6)
C40.0507 (9)0.0356 (8)0.0393 (9)−0.0011 (7)0.0212 (7)−0.0016 (6)
C50.0744 (13)0.0482 (10)0.0396 (9)−0.0177 (9)0.0143 (9)−0.0047 (7)
C60.0829 (14)0.0548 (11)0.0359 (9)−0.0104 (9)0.0126 (9)0.0045 (8)
C70.0563 (10)0.0371 (8)0.0420 (9)−0.0009 (7)0.0201 (8)−0.0013 (6)
C90.0716 (12)0.0354 (8)0.0507 (10)0.0021 (8)0.0253 (9)0.0062 (7)
C100.0649 (11)0.0424 (9)0.0485 (10)0.0035 (8)0.0228 (8)0.0079 (7)
C110.0721 (13)0.0510 (11)0.0593 (12)0.0064 (9)0.0307 (10)0.0166 (8)
C120.1018 (19)0.107 (2)0.0593 (14)−0.0033 (15)0.0234 (13)0.0293 (13)
N10.0776 (11)0.0426 (8)0.0432 (8)−0.0073 (7)0.0227 (8)0.0025 (6)
N80.0662 (9)0.0316 (7)0.0405 (7)0.0033 (6)0.0235 (7)0.0021 (6)
S10.1429 (6)0.0376 (3)0.0602 (4)−0.0080 (3)0.0474 (4)−0.0114 (2)

Geometric parameters (Å, °)

C2—N11.327 (2)C9—C101.498 (2)
C2—C31.383 (2)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.378 (2)C10—C111.520 (2)
C3—H30.9300C10—H10A0.9700
C4—C51.384 (2)C10—H10B0.9700
C4—C71.495 (2)C11—C121.504 (3)
C5—C61.370 (3)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C6—N11.326 (2)C12—H12A0.9600
C6—H60.9300C12—H12B0.9600
C7—N81.318 (2)C12—H12C0.9600
C7—S11.6608 (16)N8—H80.86 (2)
C9—N81.463 (2)
N1—C2—C3123.97 (16)H9A—C9—H9B107.8
N1—C2—H2118.0C9—C10—C11110.82 (15)
C3—C2—H2118.0C9—C10—H10A109.5
C4—C3—C2119.42 (15)C11—C10—H10A109.5
C4—C3—H3120.3C9—C10—H10B109.5
C2—C3—H3120.3C11—C10—H10B109.5
C3—C4—C5116.63 (15)H10A—C10—H10B108.1
C3—C4—C7123.18 (14)C12—C11—C10113.24 (19)
C5—C4—C7120.18 (15)C12—C11—H11A108.9
C6—C5—C4119.76 (16)C10—C11—H11A108.9
C6—C5—H5120.1C12—C11—H11B108.9
C4—C5—H5120.1C10—C11—H11B108.9
N1—C6—C5124.15 (17)H11A—C11—H11B107.7
N1—C6—H6117.9C11—C12—H12A109.5
C5—C6—H6117.9C11—C12—H12B109.5
N8—C7—C4116.70 (13)H12A—C12—H12B109.5
N8—C7—S1123.30 (12)C11—C12—H12C109.5
C4—C7—S1120.00 (12)H12A—C12—H12C109.5
N8—C9—C10113.15 (14)H12B—C12—H12C109.5
N8—C9—H9A108.9C6—N1—C2116.05 (15)
C10—C9—H9A108.9C7—N8—C9121.94 (14)
N8—C9—H9B108.9C7—N8—H8122.2 (13)
C10—C9—H9B108.9C9—N8—H8115.8 (13)
N1—C2—C3—C4−1.5 (3)C5—C4—C7—S1−33.5 (2)
C2—C3—C4—C51.2 (2)N8—C9—C10—C11−178.86 (16)
C2—C3—C4—C7−178.13 (16)C9—C10—C11—C12−171.50 (18)
C3—C4—C5—C6−0.1 (3)C5—C6—N1—C20.6 (3)
C7—C4—C5—C6179.24 (18)C3—C2—N1—C60.6 (3)
C4—C5—C6—N1−0.9 (3)C4—C7—N8—C9−178.06 (15)
C3—C4—C7—N8−33.7 (2)S1—C7—N8—C92.4 (3)
C5—C4—C7—N8146.99 (17)C10—C9—N8—C7−168.50 (16)
C3—C4—C7—S1145.88 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N8—H8···N1i0.859 (19)2.182 (19)3.033 (2)171 (2)

Symmetry codes: (i) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2253).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2004). SAINT (Version 6.0a), APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1989). Materials Science Monographs, No. 54, Crystal Engineering - The Design of Organic Solids, edited by G. R. Desiraju, pp. 85–113. New York: Elsevier Science Publishers.
  • Dodge, A. G., Richman, J. E., Johnson, G. & Wackett, L. P. (2006). Appl. Environm. Microbiol.72, 7468–7476. [PMC free article] [PubMed]
  • Klimsova, V., Svoboda, M., Waiser, K., Pour, M. & Kaustova, J. (1999). Collect. Czech. Chem. Commn.64, 417–434.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Ramachandran, K. L. (2005). Asian J. Chem.17, 1559–1563.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vannelli, T., Dykman, A. & Montellano, P. R. O. (2002). J. Biol. Chem.277, 12824–12829. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography