PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o112.
Published online 2007 December 6. doi:  10.1107/S1600536807042948
PMCID: PMC2915183

7-Acetyl­amino-2,4-dimethyl-1,8-naphthyridine

Abstract

The air-stable title compound, C12H13N3O, which is of inter­est due to its anti­bacterial properties, is an almost planar mol­ecule in which the ten atoms forming the 1,8-naphthyridine ring have an r.m.s. deviation of 0.03 Å from the least-squares plane calculated using the ten atoms. The plane of the acetyl­amino group is slightly inclined [11.7 (2)°] to the plane of the 1,8-naphthyridine ring.

Related literature

For related literature, see: Catalano et al. (2000 [triangle]); Chen et al. (2001 [triangle]); Ferrarini et al. (1997 [triangle], 2000 [triangle]); He & Lippard (2001 [triangle]); Henry & Hammond (1977 [triangle]); Mogilaiah et al. (2001 [triangle]); Nakatani et al. (2000 [triangle]); Roma et al. (2000 [triangle]); Saito et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o112-scheme1.jpg

Experimental

Crystal data

  • C12H13N3O
  • M r = 215.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o112-efi1.jpg
  • a = 7.970 (8) Å
  • b = 7.309 (7) Å
  • c = 19.071 (18) Å
  • β = 91.883 (14)°
  • V = 1110.4 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.52 × 0.36 × 0.24 mm

Data collection

  • SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.970, T max = 0.980
  • 5375 measured reflections
  • 1959 independent reflections
  • 1169 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.153
  • S = 1.02
  • 1959 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Bergerhoff, 1996 [triangle]) and XP (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2000 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807042948/er2027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807042948/er2027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the NSFC/RGC Joint Research Foundation (50418010) and a State Key Project (No. 2005CCA06800) for financial support.

supplementary crystallographic information

Comment

The 1,8-naphthyridine compounds have been the focus of studies and practical applications as antibacterial agents (Mogilaiah et al., 2001). Recent parallels in biological activity of this class of compounds have been found in the form of antibacterial (Chen et al., 2001), antiinflammatory (Roma et al., 2000), antihypertensive (Ferrarini et al., 2000), and antiplatelet activity (Ferrarini et al., 1997). In addition to medicinal applications, this class of compounds have been employed in the study of bioorganic and bioorganometallic processes (Saito et al., 2001; He et al., 2001; Nakatani et al., 2000). The structure of the C12H13N3O in (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table. 1. The structure of this compound is a rigid nearly planar molecule with an r.m.s. deviation of 0.03 Å for the ten atoms making up the 1,8-naphthyridine ring. The least square plane calculated from the atoms of the acetyl amino group make an dihedral angle of 11.7 (2) ° to the least square plane of the 1,8-naphthyridine ring All bond distances are essentially identical to those found in the literature (Catalano et al., 2000).

Experimental

2-amino-5, 7-Dimethyl-1, 8-naphthyridine (Henry et al., 1977) (4.0 g, 0.10 mol) was added to a Ac2O (15 ml) solution under an atmosphere of N2. After the solution was stirred at reflux temperature for 1 h, excess solvent was removed and the final product was obtained following flash chromatography. Then, the compound was dissolved in CH2Cl2 and recrystallized by slow diffusion of aether into the CH2Cl2 solution. Yellow crystals suitable for X-ray diffraction were obtained.

Refinement

All H atoms were placed in calculated positions. The H atoms were then constrained to an ideal geometry with C—H distances of 0.93–0.96 Å, Uiso(H) = 1.2Ueq(C) and N—H distance of 0.86 Å with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound drawn with DIAMOND (Bergerhoff, 1996). Displacement ellipsoids at the 30% probability level.
Fig. 2.
The packing of the title compound viewed along the c axis, drawn with XP (Bruker, 2000). H atoms have been omitted. The molecules shown are centered around z=0.0.

Crystal data

C12H13N3OF000 = 456.0
Mr = 215.25Dx = 1.288 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1274 reflections
a = 7.970 (8) Åθ = 2.7–25.2º
b = 7.309 (7) ŵ = 0.09 mm1
c = 19.071 (18) ÅT = 298 (2) K
β = 91.883 (14)ºBlock, pale yellow
V = 1110.4 (18) Å30.52 × 0.36 × 0.24 mm
Z = 4

Data collection

SMART 1K CCD diffractometer1959 independent reflections
Radiation source: fine-focus sealed tube1169 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 10 pixels mm-1θmax = 25.0º
T = 298(2) Kθmin = 2.1º
[var phi] and ω scansh = −9→9
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)k = −8→8
Tmin = 0.970, Tmax = 0.980l = −18→22
5375 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.153  w = 1/[σ2(Fo2) + (0.0724P)2 + 0.2527P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1959 reflectionsΔρmax = 0.27 e Å3
145 parametersΔρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8038 (2)0.1591 (3)0.16857 (10)0.0416 (5)
N20.6692 (2)−0.1164 (3)0.15749 (10)0.0443 (6)
N30.9292 (3)0.4340 (3)0.18935 (10)0.0483 (6)
H30.89560.41990.23140.058*
O11.0871 (3)0.6171 (3)0.12288 (10)0.0856 (8)
C10.7455 (3)0.0253 (3)0.12480 (11)0.0391 (6)
C20.6113 (3)−0.2514 (4)0.11782 (13)0.0480 (7)
C30.6280 (3)−0.2537 (4)0.04464 (14)0.0546 (7)
H3A0.5891−0.35460.01920.066*
C40.6991 (3)−0.1130 (4)0.01004 (12)0.0472 (7)
C50.7602 (3)0.0348 (3)0.05134 (12)0.0410 (6)
C60.8324 (3)0.1936 (4)0.02437 (13)0.0498 (7)
H60.84250.2063−0.02380.060*
C70.8875 (3)0.3283 (4)0.06768 (13)0.0519 (7)
H70.93310.43510.04990.062*
C80.8742 (3)0.3032 (3)0.14080 (12)0.0415 (6)
C90.5235 (4)−0.4030 (4)0.15366 (15)0.0654 (8)
H9A0.5582−0.40540.20230.098*
H9B0.5514−0.51730.13220.098*
H9C0.4045−0.38390.14960.098*
C100.7102 (4)−0.1127 (4)−0.06836 (13)0.0670 (9)
H10A0.6876−0.2334−0.08610.100*
H10B0.8208−0.0758−0.08090.100*
H10C0.6291−0.0287−0.08820.100*
C111.0292 (3)0.5810 (4)0.17874 (14)0.0531 (7)
C121.0655 (4)0.6957 (4)0.24196 (16)0.0728 (9)
H12A1.16890.76050.23640.109*
H12B1.07490.61880.28270.109*
H12C0.97590.78180.24750.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0491 (12)0.0434 (12)0.0325 (11)−0.0017 (10)0.0048 (9)0.0003 (10)
N20.0509 (12)0.0426 (13)0.0394 (12)0.0014 (10)0.0001 (9)0.0032 (10)
N30.0605 (13)0.0505 (14)0.0348 (11)−0.0094 (11)0.0131 (10)−0.0031 (10)
O10.1048 (17)0.1011 (18)0.0518 (13)−0.0489 (14)0.0190 (12)0.0028 (12)
C10.0413 (13)0.0436 (15)0.0323 (13)0.0071 (11)0.0007 (10)−0.0007 (11)
C20.0502 (15)0.0443 (16)0.0490 (16)0.0052 (12)−0.0052 (13)0.0001 (13)
C30.0593 (17)0.0520 (18)0.0515 (17)0.0047 (14)−0.0120 (14)−0.0105 (14)
C40.0478 (15)0.0560 (17)0.0376 (14)0.0117 (13)−0.0033 (11)−0.0068 (13)
C50.0408 (13)0.0503 (16)0.0318 (13)0.0076 (12)0.0005 (10)0.0005 (12)
C60.0562 (15)0.0649 (18)0.0285 (13)0.0037 (14)0.0053 (11)0.0025 (13)
C70.0626 (17)0.0556 (17)0.0381 (14)−0.0031 (14)0.0096 (12)0.0073 (13)
C80.0463 (14)0.0448 (15)0.0339 (13)0.0024 (12)0.0073 (11)0.0011 (12)
C90.073 (2)0.0542 (19)0.069 (2)−0.0094 (15)−0.0014 (16)0.0020 (15)
C100.078 (2)0.085 (2)0.0372 (15)0.0111 (17)−0.0053 (14)−0.0135 (15)
C110.0555 (16)0.0564 (18)0.0479 (16)−0.0107 (14)0.0118 (13)0.0033 (14)
C120.087 (2)0.068 (2)0.065 (2)−0.0249 (18)0.0199 (16)−0.0170 (16)

Geometric parameters (Å, °)

N1—C81.313 (3)C5—C61.401 (3)
N1—C11.357 (3)C6—C71.349 (4)
N2—C21.318 (3)C6—H60.9300
N2—C11.363 (3)C7—C81.414 (3)
N3—C111.357 (3)C7—H70.9300
N3—C81.392 (3)C9—H9A0.9600
N3—H30.8600C9—H9B0.9600
O1—C111.204 (3)C9—H9C0.9600
C1—C51.411 (3)C10—H10A0.9600
C2—C31.406 (4)C10—H10B0.9600
C2—C91.488 (4)C10—H10C0.9600
C3—C41.356 (4)C11—C121.489 (4)
C3—H3A0.9300C12—H12A0.9600
C4—C51.414 (3)C12—H12B0.9600
C4—C101.501 (4)C12—H12C0.9600
C8—N1—C1118.2 (2)C8—C7—H7120.8
C2—N2—C1117.4 (2)N1—C8—N3114.4 (2)
C11—N3—C8128.2 (2)N1—C8—C7123.3 (2)
C11—N3—H3115.9N3—C8—C7122.3 (2)
C8—N3—H3115.9C2—C9—H9A109.5
N1—C1—N2114.5 (2)C2—C9—H9B109.5
N1—C1—C5122.5 (2)H9A—C9—H9B109.5
N2—C1—C5123.0 (2)C2—C9—H9C109.5
N2—C2—C3122.4 (2)H9A—C9—H9C109.5
N2—C2—C9117.0 (2)H9B—C9—H9C109.5
C3—C2—C9120.5 (2)C4—C10—H10A109.5
C4—C3—C2121.9 (2)C4—C10—H10B109.5
C4—C3—H3A119.0H10A—C10—H10B109.5
C2—C3—H3A119.0C4—C10—H10C109.5
C3—C4—C5116.7 (2)H10A—C10—H10C109.5
C3—C4—C10121.7 (2)H10B—C10—H10C109.5
C5—C4—C10121.6 (3)O1—C11—N3123.3 (3)
C6—C5—C1117.0 (2)O1—C11—C12121.6 (3)
C6—C5—C4124.5 (2)N3—C11—C12115.1 (2)
C1—C5—C4118.5 (2)C11—C12—H12A109.5
C7—C6—C5120.6 (2)C11—C12—H12B109.5
C7—C6—H6119.7H12A—C12—H12B109.5
C5—C6—H6119.7C11—C12—H12C109.5
C6—C7—C8118.4 (2)H12A—C12—H12C109.5
C6—C7—H7120.8H12B—C12—H12C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2027).

References

  • Bergerhoff, G. (1996). DIAMOND. Version 1.2. Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
  • Bruker (2000). SMART, SAINT, XPREP and XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem.39, 121–127. [PubMed]
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem.44, 2374–2378. [PubMed]
  • Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem.35, 815–819. [PubMed]
  • Ferrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem.34, 1501–1504.
  • He, C. & Lippard, S. J. (2001). J. Am. Chem. Soc.40, 1414–1419.
  • Henry, R. A. & Hammond, P. R. (1977). J. Heterocycl. Chem.14, 1109–1112.
  • Mogilaiah, K., Chowdary, D. S. & Rao, R. B. (2001). Indian J. Chem. pp. 40–43.
  • Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc.122, 2172–2178.
  • Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem.35, 1021–1026. [PubMed]
  • Saito, I., Sando, S. & Nakatani, K. (2001). Bioorg. Med. Chem.9, 2381–2387. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2000). SHELXTL Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2002). SADABS Version 2.03. University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography