PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o104.
Published online 2007 December 6. doi:  10.1107/S1600536807062265
PMCID: PMC2915178

N-(Biphenyl-4-carbon­yl)-N′-(4-chloro­phen­yl)thio­urea

Abstract

In the title compound, C20H15ClN2OS, the benzene rings of the biphenyl group are at an angle of 44.23 (12)°. The C4N2OS central thio­urea fragment makes dihedral angles with the benzene carbonyl and chloro­benzene rings of 55.96 (9) and 64.09 (9)°, respectively. The transcis geometry of the thio­urea group is stabilized by the intra­molecular hydrogen bond between the carbonyl O atom and the H atom of the cis-thio­amide. In the crystal structure, mol­ecules are linked by N—H(...)S and N—H(...)O inter­molecular hydrogen bonds to form one-dimensional chains along the c axis. C—H(...)π inter­actions also contribute to the stability of the mol­ecule.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Arif & Yamin (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o104-scheme1.jpg

Experimental

Crystal data

  • C20H15ClN2OS
  • M r = 366.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o104-efi1.jpg
  • a = 16.039 (7) Å
  • b = 6.087 (3) Å
  • c = 18.096 (8) Å
  • β = 94.780 (8)°
  • V = 1760.5 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 298 (2) K
  • 0.49 × 0.46 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.848, T max = 0.966
  • 9371 measured reflections
  • 3475 independent reflections
  • 2278 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.122
  • S = 1.02
  • 3475 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062265/su2027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062265/su2027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education for research grant No. UKM-ST-01-FRGS-0003-2006, and the Universiti Kebangsaan Malaysia and the Universiti Malaysia Sarawak for the facilities and scholarship to MAMA.

supplementary crystallographic information

Comment

The title compound (Fig. 1) is an isomeric analog of the previously reported N-(biphenyl-4-carbonyl)-N'-(2-chlorophenyl) thiourea (II) (Arif and Yamin, 2007). The dihedral angle between the two benzene rings in the biphenyl fragment is 44.23 (12)°, which is double the value of 20.71 (17)° in (II). The examination on the planarity of the central thiourea fragment S1/N1/N2/C14 and the chlorophenyl plane (C15—C20)/Cl1, indicates that they are planar. The central thiourea fragment makes dihedral angles with the benzene carbonyl and chlorobenzene rings of 55.96 (9) and 64.09 (9)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O1 intramolecular hydrogen bond (Table 1).

In the crystal structure symmetry related molecules are linked by N1—H1···S1i and N2—H2···O1ii intermolecular hydrogen bonds to form one-dimensional chains along the c axis (Fig. 2 and Table 1). The molecule is also stabilized by a C1—H1A···π interaction; the distance between H1A and the (C15—C20) ring centroid is 2.98 Å, and the angle about the hydrogen atom is 124°.

Experimental

A solution of 4-chloroaniline (0.63 g, 2.5 mmol) in 20 ml acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar amount of biphenylcarbomoylisothiocyanate (0.60 g, 2.5 mmol) in 20 ml of acetone. The mixture was refluxed for about 3 h. The light yellow solution was filtered and the filtrate allowed to evaporate at room temperature. Colourless crystals were obtained after five days (yield 0.71 g, 85%, m.p.: 164–166°C).

Refinement

H atoms on C and N atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(parent atom).

Figures

Fig. 1.
Molecular structure of compound (I), with displacement ellipsoid drawn at the 50% probablity level. The dashed line indicates the intramolecular hydrogen bond.
Fig. 2.
A view along the b axis of the crystal packing of compound (I). The dashed line indicates the intermolecular N—H···S and N—H···O hydrogen bonds (see Table 1 for details).

Crystal data

C20H15ClN2OSF000 = 760
Mr = 366.85Dx = 1.384 Mg m3
Monoclinic, P2/cMelting point: 164-166°C K
Hall symbol: -P 2ycMo Kα radiation λ = 0.71073 Å
a = 16.039 (7) ÅCell parameters from 1713 reflections
b = 6.087 (3) Åθ = 2.2–26.0º
c = 18.096 (8) ŵ = 0.35 mm1
β = 94.780 (8)ºT = 298 (2) K
V = 1760.5 (14) Å3Block, colourless
Z = 40.49 × 0.46 × 0.10 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3475 independent reflections
Radiation source: fine-focus sealed tube2278 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.037
T = 298(2) Kθmax = 26.0º
ω scanθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −19→18
Tmin = 0.848, Tmax = 0.966k = −7→7
9371 measured reflectionsl = −22→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0946P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3475 reflectionsΔρmax = 0.28 e Å3
226 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.37861 (5)0.39472 (17)0.18867 (5)0.1065 (4)
S11.08379 (4)0.38002 (11)0.42312 (3)0.0553 (2)
O10.95079 (10)0.9893 (3)0.32501 (9)0.0591 (5)
N10.97515 (11)0.7034 (3)0.40513 (10)0.0483 (5)
H10.95640.64400.44350.058*
N21.07779 (10)0.7027 (3)0.32382 (10)0.0487 (5)
H21.05370.81940.30570.058*
C10.79626 (14)0.7695 (4)0.42417 (12)0.0505 (6)
H1A0.80260.63330.40200.061*
C20.72746 (13)0.8084 (4)0.46287 (13)0.0504 (6)
H2A0.68720.69930.46560.060*
C30.71742 (13)1.0086 (4)0.49788 (12)0.0445 (6)
C40.64556 (14)1.0439 (4)0.54340 (13)0.0481 (6)
C50.62285 (15)0.8839 (4)0.59148 (14)0.0601 (7)
H50.65320.75380.59570.072*
C60.55587 (17)0.9127 (5)0.63367 (16)0.0752 (9)
H60.54160.80320.66610.090*
C70.51023 (17)1.1049 (6)0.62738 (16)0.0749 (9)
H70.46451.12460.65500.090*
C80.53267 (16)1.2669 (5)0.58009 (16)0.0759 (9)
H80.50261.39760.57630.091*
C90.59943 (15)1.2364 (5)0.53843 (15)0.0627 (7)
H90.61391.34680.50640.075*
C100.77729 (14)1.1700 (4)0.49070 (13)0.0525 (6)
H100.77131.30580.51320.063*
C110.84582 (14)1.1326 (4)0.45067 (13)0.0519 (6)
H110.88501.24320.44580.062*
C120.85579 (13)0.9293 (4)0.41789 (12)0.0431 (5)
C130.93135 (13)0.8825 (4)0.37742 (12)0.0451 (6)
C141.04533 (13)0.6039 (4)0.38029 (12)0.0425 (5)
C151.15067 (13)0.6247 (4)0.29167 (11)0.0426 (5)
C161.22033 (14)0.7565 (5)0.29525 (12)0.0572 (7)
H161.21990.89270.31850.069*
C171.29127 (15)0.6842 (5)0.26385 (15)0.0679 (8)
H171.33890.77190.26550.081*
C181.29059 (15)0.4827 (5)0.23047 (14)0.0605 (7)
C191.22169 (16)0.3514 (4)0.22703 (14)0.0594 (7)
H191.22260.21410.20460.071*
C201.15066 (15)0.4242 (4)0.25714 (13)0.0530 (6)
H201.10270.33760.25410.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0737 (5)0.1498 (9)0.1022 (7)0.0428 (5)0.0449 (5)0.0262 (6)
S10.0576 (4)0.0604 (4)0.0499 (4)0.0152 (3)0.0171 (3)0.0127 (3)
O10.0684 (11)0.0584 (11)0.0528 (10)0.0138 (9)0.0183 (8)0.0152 (9)
N10.0496 (11)0.0554 (13)0.0417 (11)0.0119 (10)0.0137 (9)0.0092 (9)
N20.0495 (11)0.0530 (12)0.0454 (11)0.0088 (9)0.0138 (9)0.0096 (10)
C10.0504 (14)0.0455 (15)0.0549 (15)0.0053 (12)0.0007 (11)−0.0092 (12)
C20.0434 (13)0.0483 (15)0.0594 (15)−0.0066 (11)0.0039 (11)−0.0050 (12)
C30.0415 (12)0.0462 (15)0.0456 (13)0.0027 (11)0.0029 (10)0.0012 (11)
C40.0419 (13)0.0507 (15)0.0519 (14)−0.0052 (11)0.0046 (10)−0.0057 (12)
C50.0554 (15)0.0614 (18)0.0644 (17)−0.0039 (13)0.0110 (13)0.0014 (14)
C60.0655 (18)0.090 (2)0.0726 (19)−0.0176 (17)0.0198 (15)0.0045 (17)
C70.0504 (16)0.100 (3)0.077 (2)−0.0100 (17)0.0222 (14)−0.0116 (19)
C80.0542 (17)0.084 (2)0.091 (2)0.0153 (15)0.0165 (15)−0.0057 (18)
C90.0575 (16)0.0625 (18)0.0699 (18)0.0081 (14)0.0166 (13)0.0053 (14)
C100.0577 (15)0.0411 (14)0.0606 (16)0.0008 (12)0.0165 (12)−0.0076 (12)
C110.0524 (14)0.0462 (15)0.0590 (15)−0.0046 (12)0.0157 (11)−0.0034 (12)
C120.0420 (12)0.0461 (14)0.0411 (13)0.0065 (11)0.0038 (10)0.0020 (11)
C130.0470 (13)0.0482 (15)0.0399 (13)0.0018 (11)0.0017 (10)−0.0025 (12)
C140.0403 (12)0.0489 (14)0.0390 (12)0.0017 (11)0.0066 (9)0.0001 (11)
C150.0441 (12)0.0497 (14)0.0347 (12)0.0004 (11)0.0077 (9)0.0060 (11)
C160.0613 (16)0.0607 (18)0.0505 (15)−0.0115 (13)0.0101 (12)−0.0079 (13)
C170.0453 (15)0.098 (2)0.0610 (17)−0.0151 (15)0.0092 (12)0.0054 (17)
C180.0505 (15)0.083 (2)0.0497 (15)0.0137 (15)0.0154 (12)0.0120 (15)
C190.0757 (18)0.0522 (16)0.0529 (15)0.0090 (14)0.0196 (13)0.0009 (13)
C200.0537 (15)0.0583 (17)0.0487 (14)−0.0076 (12)0.0138 (11)−0.0026 (13)

Geometric parameters (Å, °)

Cl1—C181.741 (2)C6—H60.9300
S1—C141.661 (2)C7—C81.374 (4)
O1—C131.212 (3)C7—H70.9300
N1—C131.369 (3)C8—C91.372 (3)
N1—C141.386 (3)C8—H80.9300
N1—H10.8600C9—H90.9300
N2—C141.329 (3)C10—C111.385 (3)
N2—C151.430 (3)C10—H100.9300
N2—H20.8600C11—C121.387 (3)
C1—C121.374 (3)C11—H110.9300
C1—C21.376 (3)C12—C131.495 (3)
C1—H1A0.9300C15—C201.371 (3)
C2—C31.389 (3)C15—C161.373 (3)
C2—H2A0.9300C16—C171.385 (3)
C3—C101.387 (3)C16—H160.9300
C3—C41.487 (3)C17—C181.367 (4)
C4—C51.375 (3)C17—H170.9300
C4—C91.385 (3)C18—C191.361 (4)
C5—C61.380 (3)C19—C201.376 (3)
C5—H50.9300C19—H190.9300
C6—C71.380 (4)C20—H200.9300
C13—N1—C14129.43 (18)C11—C10—C3121.2 (2)
C13—N1—H1115.3C11—C10—H10119.4
C14—N1—H1115.3C3—C10—H10119.4
C14—N2—C15123.29 (19)C10—C11—C12119.7 (2)
C14—N2—H2118.4C10—C11—H11120.2
C15—N2—H2118.4C12—C11—H11120.2
C12—C1—C2120.8 (2)C1—C12—C11119.4 (2)
C12—C1—H1A119.6C1—C12—C13120.2 (2)
C2—C1—H1A119.6C11—C12—C13120.4 (2)
C1—C2—C3120.8 (2)O1—C13—N1123.8 (2)
C1—C2—H2A119.6O1—C13—C12123.6 (2)
C3—C2—H2A119.6N1—C13—C12112.62 (19)
C10—C3—C2118.1 (2)N2—C14—N1115.62 (19)
C10—C3—C4121.6 (2)N2—C14—S1125.19 (16)
C2—C3—C4120.3 (2)N1—C14—S1119.17 (16)
C5—C4—C9118.2 (2)C20—C15—C16120.7 (2)
C5—C4—C3120.5 (2)C20—C15—N2120.8 (2)
C9—C4—C3121.4 (2)C16—C15—N2118.5 (2)
C4—C5—C6121.3 (3)C15—C16—C17119.2 (3)
C4—C5—H5119.3C15—C16—H16120.4
C6—C5—H5119.3C17—C16—H16120.4
C7—C6—C5119.6 (3)C18—C17—C16119.3 (2)
C7—C6—H6120.2C18—C17—H17120.3
C5—C6—H6120.2C16—C17—H17120.3
C8—C7—C6119.7 (3)C19—C18—C17121.6 (2)
C8—C7—H7120.1C19—C18—Cl1119.0 (2)
C6—C7—H7120.1C17—C18—Cl1119.4 (2)
C9—C8—C7120.1 (3)C18—C19—C20119.3 (3)
C9—C8—H8119.9C18—C19—H19120.4
C7—C8—H8119.9C20—C19—H19120.4
C8—C9—C4121.1 (3)C15—C20—C19119.9 (2)
C8—C9—H9119.5C15—C20—H20120.1
C4—C9—H9119.5C19—C20—H20120.1
C12—C1—C2—C3−1.4 (3)C14—N1—C13—O1−2.3 (4)
C1—C2—C3—C102.0 (3)C14—N1—C13—C12176.5 (2)
C1—C2—C3—C4−176.2 (2)C1—C12—C13—O1123.0 (3)
C10—C3—C4—C5−134.7 (3)C11—C12—C13—O1−58.3 (3)
C2—C3—C4—C543.4 (3)C1—C12—C13—N1−55.8 (3)
C10—C3—C4—C945.7 (3)C11—C12—C13—N1122.9 (2)
C2—C3—C4—C9−136.2 (2)C15—N2—C14—N1179.21 (19)
C9—C4—C5—C60.2 (4)C15—N2—C14—S11.0 (3)
C3—C4—C5—C6−179.4 (2)C13—N1—C14—N24.0 (3)
C4—C5—C6—C70.4 (4)C13—N1—C14—S1−177.63 (18)
C5—C6—C7—C8−1.0 (4)C14—N2—C15—C2063.7 (3)
C6—C7—C8—C91.0 (5)C14—N2—C15—C16−117.2 (3)
C7—C8—C9—C4−0.4 (4)C20—C15—C16—C17−0.4 (4)
C5—C4—C9—C8−0.2 (4)N2—C15—C16—C17−179.5 (2)
C3—C4—C9—C8179.4 (2)C15—C16—C17—C18−0.5 (4)
C2—C3—C10—C11−0.8 (4)C16—C17—C18—C190.3 (4)
C4—C3—C10—C11177.3 (2)C16—C17—C18—Cl1178.19 (19)
C3—C10—C11—C12−0.9 (4)C17—C18—C19—C200.7 (4)
C2—C1—C12—C11−0.4 (3)Cl1—C18—C19—C20−177.18 (19)
C2—C1—C12—C13178.3 (2)C16—C15—C20—C191.4 (4)
C10—C11—C12—C11.6 (3)N2—C15—C20—C19−179.5 (2)
C10—C11—C12—C13−177.2 (2)C18—C19—C20—C15−1.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.002.683 (3)135
N1—H1···S1i0.862.553.362 (3)157
N2—H2···O1ii0.862.583.210 (3)131
C1—H1A···Cg3ii0.932.983.586 (3)124

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2027).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o3594.
  • Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography