PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m260–m261.
Published online 2007 December 21. doi:  10.1107/S1600536807067396
PMCID: PMC2915173

Poly[diaqua­bis(2,2′-bipyridine)tris­(μ4-2,2′-bipyridine-4,4′-dicarboxyl­ato)dineodymium(III)]

Abstract

In the crystal structure of the title mixed-ligand coordination polymer, [Nd2(C12H6N2O4)3(C10H8N2)2(H2O)2]n, the NdIII ion is in an octa­hedral coordination environment formed by one water mol­ecule, one chelating 2,2′-bipyridine ligand, and five monodentate carboxyl­ate groups. The local coordination polyhedron around the NdIII ion is a bicapped trigonal prism. Two NdIII centers are bridged by four carboxyl­ate groups to form an Nd2 dimeric unit; these are further connected by 2,2′-bipyridine-4,4′-dicarboxyl­ate linkers, resulting in a layered coordination network.

Related literature

Only lanthanide-2,2′-bipyridine-4,4′-dicarboxyl­ate-based coordination polymers with three-dimensional porous framework structures have been previously reported (Wu et al., 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m260-scheme1.jpg

Experimental

Crystal data

  • [Nd2(C12H6N2O4)3(C10H8N2)2(H2O)2]
  • M r = 681.72
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m260-efi1.jpg
  • a = 8.9914 (2) Å
  • b = 12.5409 (3) Å
  • c = 12.7455 (3) Å
  • α = 67.809 (2)°
  • β = 88.645 (2)°
  • γ = 75.437 (1)°
  • V = 1283.89 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.08 mm−1
  • T = 200 (2) K
  • 0.5 × 0.4 × 0.2 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.398, T max = 0.660
  • 4669 measured reflections
  • 16411 independent reflections
  • 4460 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.061
  • S = 1.17
  • 4669 reflections
  • 371 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.97 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067396/ww2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067396/ww2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the financial support of the National Science Council and Fu Jen Catholic University, Taiwan.

supplementary crystallographic information

Comment

As shown in figure 1, a NdIII cation, one 2,2'-bipyridine (bpy) ligand, one coordinated water molecule, as well as one and a half of the 2,2'-bipyridine-4,4'-dicarboxylate (bpdc) ligands were observed in the crystallographic asymmetric unit. The observation of symmetrical C?O bond lengths range from 1.252 (3) Å to 1.267 (4) Å indicated that all of the carboxyl groups of the bpdc ligands are deprotonated to achieve charge neutrality with the NdIII cation. The formula of the title compound is assigned to be [Nd2(C10H8N2)2(C12H6N2O4)3(H2O)2]n.

The NdIII ion exists in an eight-coordinated environment formed by one water molecule, one chelating bpy ligand, and five monodentate carboxylate groups of the bpdc ligands. The local coordination geometry around NdIII ion is a bicapped trigonal prism polyhedron. Two NdIII centers are bridged by four carboxylate groups to become a Nd2-dimer unit (Figure 2). An inversion center is located at the center of the Nd···Nd axis.

As shown in Figure 3, the Nd2-dimer unit is linked through the bpdc ligands to form a layered coordination network. The bpdc ligands present two distinct types of bridging coordination environments, a bis(monodentate) mode as well as a bis(syn,syn-bridging bidentate) mode. Due to the high oxophilicity (hard acid-hard base interaction) of the lanthanide ions, the bipyridine group of the bpdc ligand is not involved in coordination. Two of the bis(syn,syn-bridging bidentate) type bpdc bridging ligands are stacked in a parallel fashion. However, no obvious π–π interactions between the inter-ligand pyridine rings are observed (centroid-to-centroid distance of 4.04 Å and dihedral angle of 19.89°). Both of the hydrogen atoms of the coordinated water molecule O7 serve as hydrogen-bonding donors to form two intra-layer and one inter-layer hydrogen-bonding interactions with the oxygen atoms of the carboxylate groups. It is worthwhile noting that the inter-layer O–H···O hydrogen-bonding interactions play an import role in the stabilization of the layer-to-layer stacking in the crystal structure of the title compound. In addition, several intra-layer C–H···O interactions are also observed for the title compound, despite their weakness.

Solely bpdc-based lanthanide coordination polymers with three-dimensional porous framework structures were previously reported (Wu et al., 2006). The diversity in structure dimensionality between the title compound and the compounds reported by Wu et al. may be attributed to the presence of chelating bpy ligands in the title compound that capped the connectivity of NdIII ions, and leads to a two-dimensional layered network. Further investigations on mixed-ligand coordination modes with lanthanide ions toward the control of structure topology and network dimensionality are in progress.

Experimental

All reagents and solvents were used as obtained without further purification. Nd(NO3)3.6H2O (0.30 mmol, 131.7 mg), 2,2'-bipyridine (0.40 mmol, 62.5 mg), 2,2'-bipyridine-4,4'-dicarboxylic acid (0.15 mmol, 36.8 mg) were dissolved in 5.0 ml of distilled water. The mixture was sealed in a Teflon-lined stainless steel vessel and held at 453 K for 96 h. The vessel was gradually cooled to room temperature, and violet crystals suitable for crystallographic analysis were obtained in the yield of 65% based on 2,2'-bipyridine-4,4'-dicarboxylic acid.

Refinement

The C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation with Uiso(H) = 1.2 Ueq(C). The N-bound H atoms were observed in a difference Fourier map, but were placed in calculated positions (N—H = 0.86 Å) and refined in the riding-model approximation with Uiso(H) = 1.2 Ueq(N). The H atoms of the coordinated water molecules were located in a difference Fourier map, and refined as riding model with Uiso(H) = 1.5 Ueq(O). A longer Nd(1)—O(7) distance of 2.513 (2) Å is observed may be attributed to the loosely bound water molecule.

Figures

Fig. 1.
The atom numbering scheme of the title compound presented in the crystallographically asymmetric unit. The atomic displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Highlight of coordination environment of the Nd(III) ions. (Key: blue: N; red: O; gray: C; auqa sphere: water molecules; purple sphere: Nd). Hydrogen atoms are omitted for clarity. (Symmetry code: (i) 1–x, 1–y, 1–z) Inset: a view ...
Fig. 3.
A view of the layer network of the title compound. (Key: auqa sphere: water molecules; purple polyhedra: Nd) Hydrogen atoms are omitted for clarity.

Crystal data

[Nd2(C12H6N2O4)3(C10H8N2)2(H2O)2]Z = 2
Mr = 681.72F000 = 676
Triclinic, P1Dx = 1.763 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.9914 (2) ÅCell parameters from 12726 reflections
b = 12.5409 (3) Åθ = 2.0–25.4º
c = 12.7455 (3) ŵ = 2.08 mm1
α = 67.809 (2)ºT = 200 (2) K
β = 88.645 (2)ºPrism, white
γ = 75.437 (1)º0.5 × 0.4 × 0.2 mm
V = 1283.89 (6) Å3

Data collection

Nonius KappaCCD diffractometer4669 independent reflections
Radiation source: sealed tube4460 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 200(2) Kθmax = 25.3º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SORTAV; Blessing, 1995)h = −10→10
Tmin = 0.398, Tmax = 0.660k = −14→15
16411 measured reflectionsl = −15→15

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0265P)2 + 1.2551P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.002
wR(F2) = 0.061Δρmax = 0.56 e Å3
S = 1.17Δρmin = −0.97 e Å3
4669 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
371 parametersExtinction coefficient: 0.0065 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.302446 (16)0.648646 (11)0.499494 (11)0.01470 (8)
O10.4250 (2)0.69456 (18)0.32145 (16)0.0229 (5)
O20.6003 (2)0.53012 (18)0.32891 (16)0.0235 (5)
O30.5424 (2)0.65947 (18)−0.43231 (16)0.0223 (4)
O40.7188 (3)0.49332 (18)−0.41903 (17)0.0241 (5)
O50.0710 (2)0.77124 (17)0.38374 (17)0.0225 (4)
O6−0.1170 (3)0.68020 (19)0.39864 (18)0.0284 (5)
O70.0896 (2)0.55410 (18)0.58438 (17)0.0233 (4)
H7A0.01420.59130.53710.035*
H7B0.11410.48490.5920.035*
N10.1807 (3)0.7494 (2)0.6388 (2)0.0215 (5)
N20.3019 (3)0.8746 (2)0.4497 (2)0.0223 (5)
N30.4653 (3)0.7593 (2)−0.0901 (2)0.0258 (6)
N40.7976 (3)0.5136 (3)−0.0406 (2)0.0291 (6)
N5−0.1566 (3)0.9404 (2)−0.0166 (2)0.0234 (5)
C10.1138 (4)0.6873 (3)0.7282 (2)0.0251 (7)
H10.12750.60470.74520.03*
C20.0265 (4)0.7370 (3)0.7965 (3)0.0312 (7)
H2−0.01760.68970.85980.037*
C30.0047 (4)0.8573 (3)0.7704 (3)0.0369 (8)
H3−0.05710.89470.81470.044*
C40.0731 (4)0.9226 (3)0.6797 (3)0.0323 (8)
H40.05921.00550.66110.039*
C50.1628 (4)0.8665 (3)0.6156 (2)0.0221 (6)
C60.2415 (4)0.9319 (3)0.5180 (3)0.0235 (6)
C70.2558 (5)1.0458 (3)0.4987 (3)0.0376 (8)
H70.21341.08440.54810.045*
C80.3316 (5)1.1022 (3)0.4078 (3)0.0426 (9)
H80.34261.17960.39430.051*
C90.3913 (5)1.0454 (3)0.3366 (3)0.0382 (8)
H90.44281.08280.27260.046*
C100.3740 (4)0.9320 (3)0.3610 (3)0.0306 (7)
H100.41570.89250.31210.037*
C110.5080 (3)0.6300 (2)0.2764 (2)0.0178 (6)
C120.4949 (3)0.6758 (2)0.1476 (2)0.0173 (6)
C130.5869 (3)0.6123 (2)0.0900 (2)0.0187 (6)
H130.66110.53940.13090.022*
C140.5690 (3)0.6570 (2)−0.0282 (2)0.0187 (6)
C150.3785 (4)0.8189 (3)−0.0329 (3)0.0306 (8)
H150.30480.8915−0.07540.037*
C160.3893 (4)0.7814 (3)0.0843 (2)0.0248 (7)
H160.32520.82750.12060.03*
C170.6656 (3)0.5932 (2)−0.0944 (2)0.0193 (6)
C180.6182 (3)0.6167 (2)−0.2056 (2)0.0183 (6)
H180.52490.6749−0.24120.022*
C190.7085 (3)0.5544 (2)−0.2641 (2)0.0177 (6)
C200.8448 (4)0.4715 (3)−0.2093 (3)0.0267 (7)
H200.90940.4265−0.24640.032*
C210.8844 (4)0.4559 (3)−0.0993 (3)0.0347 (8)
H210.97950.4007−0.0630.042*
C220.6534 (3)0.5710 (2)−0.3818 (2)0.0182 (6)
C23−0.0411 (3)0.7506 (2)0.3433 (2)0.0190 (6)
C24−0.0843 (3)0.8186 (2)0.2173 (2)0.0197 (6)
C25−0.0014 (3)0.8963 (2)0.1525 (2)0.0189 (6)
H250.0820.90840.1870.023*
C26−0.0414 (3)0.9566 (2)0.0364 (2)0.0181 (6)
C27−0.2347 (4)0.8644 (3)0.0472 (3)0.0307 (7)
H27−0.31580.85190.01070.037*
C28−0.2040 (4)0.8027 (3)0.1641 (3)0.0294 (7)
H28−0.26410.75080.20620.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.02095 (11)0.01231 (10)0.01183 (10)−0.00483 (6)0.00305 (6)−0.00552 (7)
O10.0345 (12)0.0225 (11)0.0154 (10)−0.0109 (9)0.0101 (9)−0.0095 (8)
O20.0321 (12)0.0209 (11)0.0154 (10)−0.0086 (9)0.0020 (8)−0.0036 (8)
O30.0259 (11)0.0226 (11)0.0192 (10)−0.0087 (9)−0.0010 (8)−0.0073 (8)
O40.0366 (12)0.0228 (11)0.0216 (11)−0.0120 (9)0.0075 (9)−0.0157 (9)
O50.0247 (11)0.0169 (10)0.0236 (11)−0.0065 (8)−0.0019 (8)−0.0043 (8)
O60.0287 (12)0.0233 (11)0.0281 (12)−0.0128 (9)0.0017 (9)−0.0007 (9)
O70.0286 (12)0.0204 (10)0.0214 (11)−0.0085 (9)0.0041 (9)−0.0075 (8)
N10.0286 (14)0.0169 (12)0.0195 (13)−0.0039 (10)0.0028 (10)−0.0088 (10)
N20.0296 (14)0.0190 (12)0.0193 (13)−0.0070 (11)0.0024 (10)−0.0081 (10)
N30.0301 (15)0.0262 (14)0.0153 (12)0.0019 (11)−0.0001 (10)−0.0074 (11)
N40.0280 (15)0.0361 (16)0.0196 (13)0.0024 (12)−0.0004 (11)−0.0134 (12)
N50.0254 (14)0.0251 (13)0.0221 (13)−0.0107 (11)0.0017 (10)−0.0091 (11)
C10.0348 (18)0.0187 (15)0.0188 (15)−0.0041 (13)0.0030 (13)−0.0057 (12)
C20.043 (2)0.0305 (17)0.0203 (16)−0.0108 (15)0.0096 (14)−0.0101 (13)
C30.047 (2)0.0352 (19)0.0346 (19)−0.0062 (16)0.0157 (16)−0.0243 (16)
C40.048 (2)0.0223 (16)0.0309 (18)−0.0077 (15)0.0094 (15)−0.0160 (14)
C50.0270 (16)0.0174 (14)0.0233 (15)−0.0044 (12)−0.0005 (12)−0.0101 (12)
C60.0285 (16)0.0194 (15)0.0231 (15)−0.0067 (12)0.0006 (12)−0.0083 (12)
C70.059 (2)0.0209 (16)0.038 (2)−0.0137 (16)0.0098 (17)−0.0158 (15)
C80.065 (3)0.0225 (17)0.045 (2)−0.0208 (17)0.0118 (19)−0.0121 (16)
C90.052 (2)0.0279 (18)0.036 (2)−0.0203 (17)0.0109 (17)−0.0074 (15)
C100.042 (2)0.0252 (16)0.0267 (17)−0.0139 (15)0.0093 (14)−0.0090 (13)
C110.0227 (15)0.0181 (14)0.0152 (14)−0.0121 (12)0.0047 (11)−0.0053 (11)
C120.0224 (15)0.0181 (14)0.0134 (13)−0.0103 (11)0.0049 (11)−0.0053 (11)
C130.0213 (15)0.0167 (13)0.0178 (14)−0.0052 (11)0.0016 (11)−0.0060 (11)
C140.0206 (14)0.0207 (14)0.0160 (14)−0.0063 (12)0.0026 (11)−0.0078 (11)
C150.0338 (18)0.0276 (17)0.0179 (15)0.0100 (14)−0.0024 (13)−0.0063 (13)
C160.0251 (16)0.0271 (16)0.0188 (15)0.0001 (13)0.0043 (12)−0.0096 (13)
C170.0231 (15)0.0188 (14)0.0168 (14)−0.0064 (12)0.0034 (11)−0.0073 (11)
C180.0214 (15)0.0157 (13)0.0188 (14)−0.0066 (11)0.0026 (11)−0.0066 (11)
C190.0252 (15)0.0154 (13)0.0158 (14)−0.0091 (11)0.0037 (11)−0.0073 (11)
C200.0277 (17)0.0299 (17)0.0236 (16)−0.0023 (13)0.0046 (13)−0.0149 (13)
C210.0308 (19)0.039 (2)0.0249 (17)0.0097 (15)−0.0022 (14)−0.0140 (15)
C220.0241 (15)0.0188 (14)0.0171 (14)−0.0145 (12)0.0057 (11)−0.0073 (12)
C230.0207 (15)0.0122 (13)0.0231 (15)−0.0017 (11)0.0005 (12)−0.0070 (11)
C240.0207 (15)0.0157 (13)0.0227 (15)−0.0053 (11)0.0027 (11)−0.0069 (11)
C250.0184 (14)0.0184 (14)0.0233 (15)−0.0055 (11)0.0028 (11)−0.0114 (12)
C260.0177 (14)0.0148 (13)0.0232 (15)−0.0027 (11)0.0040 (11)−0.0097 (12)
C270.0308 (18)0.0354 (18)0.0309 (18)−0.0197 (15)−0.0020 (14)−0.0110 (14)
C280.0313 (18)0.0287 (17)0.0282 (17)−0.0182 (14)0.0015 (13)−0.0044 (14)

Geometric parameters (Å, °)

Nd1—O52.386 (2)C4—H40.95
Nd1—O3i2.399 (2)C5—C61.484 (4)
Nd1—O4ii2.4120 (19)C6—C71.394 (4)
Nd1—O12.4309 (19)C7—C81.376 (5)
Nd1—O2iii2.4443 (19)C7—H70.95
Nd1—O72.5126 (20)C8—C91.376 (5)
Nd1—N12.618 (2)C8—H80.95
Nd1—N22.659 (2)C9—C101.385 (5)
O1—C111.252 (3)C9—H90.95
O2—C111.256 (3)C10—H100.95
O2—Nd1iii2.4443 (19)C11—C121.517 (4)
O3—C221.255 (4)C12—C161.379 (4)
O3—Nd1iv2.399 (2)C12—C131.392 (4)
O4—C221.252 (3)C13—C141.392 (4)
O4—Nd1ii2.4120 (19)C13—H130.95
O5—C231.267 (4)C14—C171.494 (4)
O6—C231.246 (4)C15—C161.384 (4)
O7—H7A0.8298C15—H150.95
O7—H7B0.8078C16—H160.95
N1—C11.341 (4)C17—C181.388 (4)
N1—C51.351 (4)C18—C191.385 (4)
N2—C101.342 (4)C18—H180.95
N2—C61.350 (4)C19—C201.386 (4)
N3—C151.338 (4)C19—C221.512 (4)
N3—C141.344 (4)C20—C211.384 (5)
N4—C211.337 (4)C20—H200.95
N4—C171.343 (4)C21—H210.95
N5—C271.336 (4)C23—C241.512 (4)
N5—C261.347 (4)C24—C281.380 (4)
C1—C21.376 (4)C24—C251.384 (4)
C1—H10.95C25—C261.390 (4)
C2—C31.379 (5)C25—H250.95
C2—H20.95C26—C26v1.488 (6)
C3—C41.374 (5)C27—C281.391 (5)
C3—H30.95C27—H270.95
C4—C51.390 (4)C28—H280.95
O5—Nd1—O3i141.66 (7)C6—C7—H7120.1
O5—Nd1—O4ii85.16 (7)C9—C8—C7119.3 (3)
O3i—Nd1—O4ii123.72 (7)C9—C8—H8120.4
O5—Nd1—O185.06 (7)C7—C8—H8120.4
O3i—Nd1—O181.99 (7)C8—C9—C10118.0 (3)
O4ii—Nd1—O171.54 (7)C8—C9—H9121
O5—Nd1—O2iii142.08 (7)C10—C9—H9121
O3i—Nd1—O2iii72.10 (7)N2—C10—C9123.9 (3)
O4ii—Nd1—O2iii83.53 (7)N2—C10—H10118.1
O1—Nd1—O2iii124.64 (7)C9—C10—H10118.1
O5—Nd1—O773.07 (7)O1—C11—O2125.5 (3)
O3i—Nd1—O7136.56 (7)O1—C11—C12117.3 (2)
O4ii—Nd1—O770.18 (7)O2—C11—C12117.2 (2)
O1—Nd1—O7137.04 (7)C16—C12—C13118.2 (3)
O2iii—Nd1—O769.04 (7)C16—C12—C11120.5 (3)
O5—Nd1—N182.69 (7)C13—C12—C11121.3 (2)
O3i—Nd1—N184.74 (7)C12—C13—C14119.2 (3)
O4ii—Nd1—N1143.82 (8)C12—C13—H13120.4
O1—Nd1—N1140.45 (7)C14—C13—H13120.4
O2iii—Nd1—N185.45 (7)N3—C14—C13122.8 (3)
O7—Nd1—N173.68 (7)N3—C14—C17115.7 (2)
O5—Nd1—N272.54 (7)C13—C14—C17121.5 (3)
O3i—Nd1—N269.59 (7)N3—C15—C16124.1 (3)
O4ii—Nd1—N2144.11 (7)N3—C15—H15118
O1—Nd1—N278.68 (7)C16—C15—H15118
O2iii—Nd1—N2130.91 (7)C12—C16—C15118.8 (3)
O7—Nd1—N2126.03 (7)C12—C16—H16120.6
N1—Nd1—N261.78 (7)C15—C16—H16120.6
C11—O1—Nd1132.49 (18)N4—C17—C18122.9 (3)
C11—O2—Nd1iii152.00 (19)N4—C17—C14116.5 (2)
C22—O3—Nd1iv124.74 (17)C18—C17—C14120.6 (3)
C22—O4—Nd1ii148.51 (19)C19—C18—C17119.3 (3)
C23—O5—Nd1134.30 (17)C19—C18—H18120.3
Nd1—O7—H7A105C17—C18—H18120.3
Nd1—O7—H7B109.2C18—C19—C20118.4 (3)
H7A—O7—H7B109.9C18—C19—C22120.3 (3)
C1—N1—C5118.2 (3)C20—C19—C22121.2 (3)
C1—N1—Nd1118.68 (19)C21—C20—C19118.3 (3)
C5—N1—Nd1122.42 (19)C21—C20—H20120.8
C10—N2—C6117.7 (3)C19—C20—H20120.8
C10—N2—Nd1120.7 (2)N4—C21—C20124.2 (3)
C6—N2—Nd1121.29 (19)N4—C21—H21117.9
C15—N3—C14116.9 (3)C20—C21—H21117.9
C21—N4—C17116.9 (3)O4—C22—O3125.5 (3)
C27—N5—C26117.3 (3)O4—C22—C19117.3 (3)
N1—C1—C2123.4 (3)O3—C22—C19117.1 (2)
N1—C1—H1118.3O6—C23—O5125.5 (3)
C2—C1—H1118.3O6—C23—C24118.5 (3)
C1—C2—C3118.2 (3)O5—C23—C24116.1 (2)
C1—C2—H2120.9C28—C24—C25118.7 (3)
C3—C2—H2120.9C28—C24—C23121.0 (3)
C4—C3—C2119.4 (3)C25—C24—C23120.3 (3)
C4—C3—H3120.3C24—C25—C26119.4 (3)
C2—C3—H3120.3C24—C25—H25120.3
C3—C4—C5119.6 (3)C26—C25—H25120.3
C3—C4—H4120.2N5—C26—C25122.4 (3)
C5—C4—H4120.2N5—C26—C26v116.1 (3)
N1—C5—C4121.2 (3)C25—C26—C26v121.5 (3)
N1—C5—C6116.8 (3)N5—C27—C28123.8 (3)
C4—C5—C6122.0 (3)N5—C27—H27118.1
N2—C6—C7121.3 (3)C28—C27—H27118.1
N2—C6—C5116.7 (3)C24—C28—C27118.4 (3)
C7—C6—C5121.9 (3)C24—C28—H28120.8
C8—C7—C6119.8 (3)C27—C28—H28120.8
C8—C7—H7120.1

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x, y, z−1; (v) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O60.831.922.731 (3)164
O7—H7A···O50.832.532.918 (3)110
O7—H7B···O6vi0.812.022.811 (3)165

Symmetry codes: (vi) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2111).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Wu, J.-Y., Yeh, T.-T., Wen, Y.-S., Twu, J. & Lu, K.-L. (2006). Cryst. Growth Des.6, 467–473.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography