PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m258.
Published online 2007 December 21. doi:  10.1107/S1600536807066809
PMCID: PMC2915171

(Benzoato-κ2 O,O′)(quinoline-2-carboxyl­ato-κ2 N,O)(quinoline-2-carboxylic acid-κ2 N,O)manganese(II)

Abstract

The crystal structure of the title compound, [Mn(C7H5O2)(C10H6NO2)(C10H7NO2)], contains manganese(II) ions six-coordinated in a distorted octa­hedral environment. The equatorial plane is occupied by four O atoms, two from the carboxyl­ate group of the benzoate ion, the other two from carboxyl­ate/carboxyl groups of the quinaldate/quinaldic acid mol­ecules. The axial positions are occupied by the N atoms of the quinoline ring systems. The metal ion lies on a twofold rotation axis that bisects the benzoate ligand; the quinaldate and quinaldic acid ligands are therefore equivalent by symmetry, and the carboxylate/carboxyl groups are disordered. The complexes are joined together by hydrogen bonds between the carboxyl­ate/carboxyl groups of adjacent quinaldate/quinaldic acid mol­ecules, forming zigzag chains that run along the c axis.

Related literature

For related literature, see Zurowska et al. (2007 [triangle]); Dobrzynska et al. (2005 [triangle]); Kumar & Gandotra (1980 [triangle]); Catterick et al. (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m258-scheme1.jpg

Experimental

Crystal data

  • [Mn(C7H5O2)(C10H6NO2)(C10H7NO2)]
  • M r = 521.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m258-efi1.jpg
  • a = 19.3839 (4) Å
  • b = 11.6775 (2) Å
  • c = 11.6306 (2) Å
  • β = 117.288 (1)°
  • V = 2339.67 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 293 (2) K
  • 0.24 × 0.22 × 0.15 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.883, T max = 0.908
  • 25798 measured reflections
  • 2917 independent reflections
  • 2413 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.149
  • S = 1.08
  • 2917 reflections
  • 169 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066809/bt2660sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066809/bt2660Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

supplementary crystallographic information

Comment

Some compounds with quinoline derivatives, transition metal ions and halide ions exhibit interesting magnetic properties related with the formation of low dimensional elements (Zurowska et al., 2007; Dobrzynska et al., 2005; Kumar & Gandotra, 1980; Catterick et al., 1974). The crystal structure of the title compound, Mn(C7H5O2) (C10H7NO2)(C10H6NO2), consists of manganese(II) ions six-coordinated in a distorted octahedral environment (Fig. 1). The basal plane is occupied by four oxygen atoms with Mn—O distances ranging from 2.1293 (18) to 2.2858 (19) Å. Two basal oxygen atoms belong to the carboxylate group of the benzoate ion, that chelates the metal ion in the usual bidentate mode. Each of the two quinoline molecules supply another O atom to the Mn coordination environment. The apical positions are occupied by the nitrogen atoms of the quinoline ring system, with a distance of 2.2858 (19) Å. Both the benzoic acid and quinoline-2-carboxylic acid molecules are planar. The maximum deviation from the quinolinic plane is 0.1040 (9)Å for O2. The maximum deviation from the benzoic plane is 0.013 (2)Å for O1. The two planes make an angle of 82.98 (9)°. The complexes are joined together by hydrogen bonds, between the carboxylate/carboxylic groups of the quinaldic acid molecules (Fig. 2). The shared hydrogen atom is disordered and the quinoline molecules are statistically neutral or negatively charged. Such H-bonds delineate zigzag chains that run along the c axis (Fig. 3).

Experimental

Approximately 0.13 mmol of 2-quinolinecarboxaldehyde (Sigma, 97%) were dissolved in 2 ml of dimethylformamide and then 0.14 mmol of benzoic acid were added to the solution. 0.12 mmol of manganese chloride tetrahydrated dissolved in 1 ml of water were also added to the former solution. After one month, single crystals of suitable quality were grown from the solution. The refined structure shows that the crystals incorporated a different quinoline derivative than that expected showing that the material purchased from Sigma was contaminated.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H=0.93 Å, Uiso(H)=1.2Ueq(C). Exception made to the carboxylic hydrogen atom that was first located in a difference map and then refined with a fixed distance to the parent O atom (0.96 Å). This atom is disordered and its occupancy refined to near 0.5 in the first cycles of refinement and it was then fixed to 0.5 in the last cycles.

Figures

Fig. 1.
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
Fig. 2.
Two of the complexes joined by a hydrogen bond (depicted as a dashed line) between the carboxylic/carboxylate groups of the quinoline molecule.

Crystal data

[Mn(C7H5O2)(C10H6NO2)(C10H7NO2)]F000 = 1068
Mr = 521.37Dx = 1.480 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 19.3839 (4) ÅCell parameters from 8901 reflections
b = 11.6775 (2) Åθ = 2.4–27.5º
c = 11.6306 (2) ŵ = 0.61 mm1
β = 117.2880 (10)ºT = 293 (2) K
V = 2339.67 (8) Å3Prism, pink
Z = 40.24 × 0.22 × 0.15 mm

Data collection

Bruker APEX CCD area-detector diffractometer2917 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 293(2) Kθmax = 28.4º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −25→25
Tmin = 0.883, Tmax = 0.908k = −15→15
25798 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149  w = 1/[σ2(Fo2) + (0.0806P)2 + 2.8119P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2917 reflectionsΔρmax = 0.68 e Å3
169 parametersΔρmin = −0.50 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.50000.20556 (4)0.25000.03799 (18)
O10.48852 (12)0.37094 (15)0.14858 (17)0.0505 (4)
O20.48495 (10)0.09330 (17)0.09597 (18)0.0508 (5)
H20.525 (3)0.041 (5)0.103 (7)0.07 (2)*0.50
N10.37188 (11)0.15467 (17)0.15100 (18)0.0378 (4)
C10.50000.4239 (3)0.25000.0395 (7)
C20.50000.5526 (3)0.25000.0359 (6)
C30.48852 (16)0.6123 (2)0.1396 (2)0.0457 (6)
H30.48070.57280.06520.055*
C40.4888 (2)0.7302 (3)0.1403 (3)0.0569 (7)
H40.48130.77020.06640.068*
C50.50000.7889 (3)0.25000.0582 (10)
H50.50000.86850.25000.070*
C60.41618 (15)0.0511 (3)0.0173 (3)0.0521 (6)
O30.39792 (16)0.0125 (4)−0.0885 (3)0.1252 (15)
C70.35213 (13)0.0869 (2)0.0500 (2)0.0402 (5)
C150.31580 (14)0.1843 (2)0.1866 (2)0.0418 (5)
C100.23875 (14)0.1435 (2)0.1169 (3)0.0487 (6)
C90.22055 (15)0.0739 (3)0.0085 (3)0.0553 (7)
H90.17010.0476−0.04040.066*
C80.27651 (15)0.0452 (2)−0.0249 (3)0.0501 (6)
H80.2652−0.0014−0.09630.060*
C110.18377 (18)0.1752 (3)0.1597 (4)0.0668 (9)
H110.13270.15000.11480.080*
C120.2053 (2)0.2419 (4)0.2655 (4)0.0790 (11)
H120.16900.26080.29380.095*
C130.2808 (2)0.2828 (3)0.3327 (3)0.0710 (9)
H130.29420.32920.40490.085*
C140.33583 (17)0.2557 (3)0.2942 (3)0.0551 (7)
H140.38600.28440.33890.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0367 (3)0.0369 (3)0.0406 (3)0.0000.0179 (2)0.000
O10.0663 (12)0.0394 (9)0.0450 (9)−0.0012 (8)0.0248 (9)−0.0037 (7)
O20.0375 (9)0.0580 (11)0.0577 (10)−0.0023 (8)0.0226 (8)−0.0194 (9)
N10.0344 (9)0.0405 (10)0.0380 (9)0.0031 (8)0.0162 (8)0.0023 (8)
C10.0338 (15)0.0405 (16)0.0427 (16)0.0000.0161 (13)0.000
C20.0321 (14)0.0367 (16)0.0402 (15)0.0000.0178 (12)0.000
C30.0552 (14)0.0469 (13)0.0379 (11)−0.0038 (11)0.0238 (11)−0.0019 (10)
C40.076 (2)0.0496 (15)0.0481 (14)−0.0032 (14)0.0305 (14)0.0087 (12)
C50.075 (3)0.0352 (18)0.065 (2)0.0000.033 (2)0.000
C60.0408 (13)0.0669 (17)0.0482 (13)0.0026 (12)0.0201 (11)−0.0100 (13)
O30.0565 (15)0.199 (4)0.117 (2)−0.0191 (18)0.0365 (15)−0.111 (3)
C70.0346 (11)0.0402 (12)0.0432 (12)0.0024 (9)0.0157 (9)0.0034 (10)
C150.0360 (11)0.0464 (13)0.0440 (12)0.0093 (9)0.0193 (10)0.0103 (10)
C100.0340 (12)0.0548 (15)0.0575 (15)0.0096 (11)0.0211 (11)0.0161 (12)
C90.0345 (12)0.0608 (16)0.0625 (16)−0.0049 (11)0.0152 (11)0.0050 (14)
C80.0415 (13)0.0508 (14)0.0497 (14)−0.0044 (11)0.0137 (11)−0.0047 (12)
C110.0428 (15)0.088 (2)0.078 (2)0.0158 (15)0.0348 (15)0.0171 (18)
C120.064 (2)0.105 (3)0.088 (2)0.033 (2)0.0518 (19)0.018 (2)
C130.069 (2)0.089 (3)0.0659 (19)0.0200 (18)0.0405 (17)−0.0030 (17)
C140.0501 (15)0.0647 (17)0.0522 (15)0.0115 (13)0.0249 (13)−0.0014 (13)

Geometric parameters (Å, °)

Mn1—O2i2.1293 (18)C5—C4i1.375 (3)
Mn1—O22.1293 (18)C5—H50.9300
Mn1—O1i2.2203 (19)C6—O31.200 (4)
Mn1—O12.2203 (19)C6—C71.515 (3)
Mn1—N12.2858 (19)C7—C81.405 (3)
Mn1—N1i2.2858 (19)C15—C141.401 (4)
Mn1—C12.550 (3)C15—C101.416 (4)
O1—C11.258 (2)C10—C91.403 (4)
O2—C61.319 (3)C10—C111.416 (4)
O2—H20.959 (10)C9—C81.352 (4)
N1—C71.319 (3)C9—H90.9300
N1—C151.373 (3)C8—H80.9300
C1—O1i1.258 (2)C11—C121.350 (6)
C1—C21.503 (5)C11—H110.9300
C2—C31.386 (3)C12—C131.390 (6)
C2—C3i1.386 (3)C12—H120.9300
C3—C41.377 (4)C13—C141.370 (4)
C3—H30.9300C13—H130.9300
C4—C51.375 (3)C14—H140.9300
C4—H40.9300
O2i—Mn1—O2104.00 (12)C4—C3—H3120.0
O2i—Mn1—O1i98.44 (7)C2—C3—H3120.0
O2—Mn1—O1i157.55 (8)C5—C4—C3120.2 (3)
O2i—Mn1—O1157.55 (8)C5—C4—H4119.9
O2—Mn1—O198.44 (7)C3—C4—H4119.9
O1i—Mn1—O159.13 (9)C4—C5—C4i120.2 (4)
O2i—Mn1—N187.81 (7)C4—C5—H5119.9
O2—Mn1—N173.62 (7)C4i—C5—H5119.9
O1i—Mn1—N1108.35 (7)O3—C6—O2125.5 (3)
O1—Mn1—N197.90 (7)O3—C6—C7118.1 (2)
O2i—Mn1—N1i73.62 (7)O2—C6—C7114.0 (2)
O2—Mn1—N1i87.81 (7)N1—C7—C8123.7 (2)
O1i—Mn1—N1i97.90 (7)N1—C7—C6116.9 (2)
O1—Mn1—N1i108.35 (7)C8—C7—C6119.3 (2)
N1—Mn1—N1i149.86 (10)N1—C15—C14119.0 (2)
O2i—Mn1—C1128.00 (6)N1—C15—C10121.0 (2)
O2—Mn1—C1128.00 (6)C14—C15—C10119.9 (2)
O1i—Mn1—C129.57 (4)C9—C10—C15118.3 (2)
O1—Mn1—C129.57 (5)C9—C10—C11123.2 (3)
N1—Mn1—C1105.07 (5)C15—C10—C11118.5 (3)
N1i—Mn1—C1105.07 (5)C8—C9—C10119.9 (2)
C1—O1—Mn189.89 (16)C8—C9—H9120.1
C6—O2—Mn1121.28 (15)C10—C9—H9120.1
C6—O2—H2110 (4)C9—C8—C7118.8 (3)
Mn1—O2—H2122 (4)C9—C8—H8120.6
C7—N1—C15118.2 (2)C7—C8—H8120.6
C7—N1—Mn1114.17 (15)C12—C11—C10120.1 (3)
C15—N1—Mn1127.58 (16)C12—C11—H11119.9
O1—C1—O1i121.1 (3)C10—C11—H11119.9
O1—C1—C2119.46 (16)C11—C12—C13121.2 (3)
O1i—C1—C2119.46 (16)C11—C12—H12119.4
O1—C1—Mn160.54 (16)C13—C12—H12119.4
O1i—C1—Mn160.54 (16)C14—C13—C12120.8 (3)
C2—C1—Mn1180.0C14—C13—H13119.6
C3—C2—C3i119.6 (3)C12—C13—H13119.6
C3—C2—C1120.20 (16)C13—C14—C15119.4 (3)
C3i—C2—C1120.20 (16)C13—C14—H14120.3
C4—C3—C2119.9 (2)C15—C14—H14120.3
O2i—Mn1—O1—C13.1 (2)O1—C1—C2—C3−0.90 (17)
O2—Mn1—O1—C1−178.80 (10)O1i—C1—C2—C3179.10 (17)
O1i—Mn1—O1—C10.0Mn1—C1—C2—C3−108 (100)
N1—Mn1—O1—C1106.70 (10)O1—C1—C2—C3i179.10 (17)
N1i—Mn1—O1—C1−88.30 (11)O1i—C1—C2—C3i−0.90 (17)
O2i—Mn1—O2—C685.4 (2)Mn1—C1—C2—C3i72 (100)
O1i—Mn1—O2—C6−96.5 (3)C3i—C2—C3—C40.2 (2)
O1—Mn1—O2—C6−93.8 (2)C1—C2—C3—C4−179.8 (2)
N1—Mn1—O2—C62.0 (2)C2—C3—C4—C5−0.3 (4)
N1i—Mn1—O2—C6157.9 (2)C3—C4—C5—C4i0.2 (2)
C1—Mn1—O2—C6−94.6 (2)Mn1—O2—C6—O3160.0 (3)
O2i—Mn1—N1—C7−107.04 (17)Mn1—O2—C6—C7−1.8 (3)
O2—Mn1—N1—C7−1.76 (16)C15—N1—C7—C81.4 (4)
O1i—Mn1—N1—C7154.79 (16)Mn1—N1—C7—C8179.9 (2)
O1—Mn1—N1—C794.77 (17)C15—N1—C7—C6−177.1 (2)
N1i—Mn1—N1—C7−55.92 (15)Mn1—N1—C7—C61.5 (3)
C1—Mn1—N1—C7124.07 (15)O3—C6—C7—N1−163.2 (3)
O2i—Mn1—N1—C1571.34 (19)O2—C6—C7—N10.1 (4)
O2—Mn1—N1—C15176.6 (2)O3—C6—C7—C818.3 (5)
O1i—Mn1—N1—C15−26.8 (2)O2—C6—C7—C8−178.5 (2)
O1—Mn1—N1—C15−86.85 (19)C7—N1—C15—C14179.6 (2)
N1i—Mn1—N1—C15122.46 (19)Mn1—N1—C15—C141.3 (3)
C1—Mn1—N1—C15−57.55 (19)C7—N1—C15—C10−0.1 (3)
Mn1—O1—C1—O1i0.000 (1)Mn1—N1—C15—C10−178.43 (17)
Mn1—O1—C1—C2180.0N1—C15—C10—C9−1.4 (4)
O2i—Mn1—C1—O1−178.49 (12)C14—C15—C10—C9178.9 (3)
O2—Mn1—C1—O11.51 (12)N1—C15—C10—C11178.8 (2)
O1i—Mn1—C1—O1180.0C14—C15—C10—C11−0.9 (4)
N1—Mn1—C1—O1−79.27 (12)C15—C10—C9—C81.7 (4)
N1i—Mn1—C1—O1100.73 (12)C11—C10—C9—C8−178.6 (3)
O2i—Mn1—C1—O1i1.51 (12)C10—C9—C8—C7−0.5 (4)
O2—Mn1—C1—O1i−178.49 (12)N1—C7—C8—C9−1.1 (4)
O1—Mn1—C1—O1i180.000 (1)C6—C7—C8—C9177.3 (3)
N1—Mn1—C1—O1i100.73 (12)C9—C10—C11—C12179.6 (3)
N1i—Mn1—C1—O1i−79.27 (12)C15—C10—C11—C12−0.7 (5)
O2i—Mn1—C1—C2−72 (100)C10—C11—C12—C131.4 (6)
O2—Mn1—C1—C2108 (100)C11—C12—C13—C14−0.6 (6)
O1i—Mn1—C1—C2−73 (100)C12—C13—C14—C15−1.0 (5)
O1—Mn1—C1—C2107 (100)N1—C15—C14—C13−178.0 (3)
N1—Mn1—C1—C228 (100)C10—C15—C14—C131.7 (4)
N1i—Mn1—C1—C2−152 (100)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.96 (7)1.70 (7)2.621 (4)160 (6)

Symmetry codes: (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2660).

References

  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843–844.
  • Dobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des.5, 1945–1951.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kumar, N. & Gandotra, A. K. (1980). Transition Met. Chem.5, 365–367.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085–3091.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography