PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m249.
Published online 2007 December 21. doi:  10.1107/S1600536807067165
PMCID: PMC2915165

catena-Poly[[(5-bromopyridine-3-carbox­yl­ato)dimetyltin(IV)]-μ-5-bromopyridine-3-carboxyl­ato]

Abstract

The title compound, [Sn(CH3)2(C6H3BrNO2)2], possesses an infinite chain structure owing to the presence of Sn—N bridges between adjacent mol­ecules. The SnO4NC2 centre has a distorted penta­gonal–bipyramidal geometry with the C atoms in the axial positions.

Related literature

For related literature, see: Tiekink (1991 [triangle]); Yin et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m249-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)2(C6H3BrNO2)2]
  • M r = 550.77
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m249-efi1.jpg
  • a = 7.579 (4) Å
  • b = 8.212 (5) Å
  • c = 14.894 (8) Å
  • α = 74.962 (7)°
  • β = 77.733 (8)°
  • γ = 88.642 (8)°
  • V = 874.4 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.05 mm−1
  • T = 298 (2) K
  • 0.27 × 0.12 × 0.02 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.292, T max = 0.889
  • 4540 measured reflections
  • 3165 independent reflections
  • 2652 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.162
  • S = 1.04
  • 3165 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 3.01 e Å−3
  • Δρmin = −1.02 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067165/hb2677sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067165/hb2677Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author ackowledges financial support from Shandong Province Science Foundation.

supplementary crystallographic information

Comment

The title compound, (I), possesses an infinite one-dimensional chain structure arising from Sn—N bridges (Fig. 1 and Table 1). As shown in Fig. 2, both carboxylate ligands chelate the Sn atom via the O atoms. One of the ligands also bridges a translationally related Sn atom via the N1 atom to form [010] chains.

The overall configuration at tin atom is best decribed as distorted pentagonal geometry with the C13 and C14 in the apical positions [C13—Sn1—C14 = 161.4 (4)°]. The sum of the equatorial angles about tin is 360°, indicating approximate co-planarity for these atoms. While the SnO4NC2 coordination geometry in (I) is similar to that seen recently in the structure of dioctyltin(IV) bis(2-pyrazinecarboxylate) (Yin et al., 2006), this type of coordination is, in general, rare in this class of compound (Tiekink, 1991).

Experimental

A mixture of dimetyltin oxide (0.329 g, 2.0 mmol) and 5-bromo-nicotinic acid (0.808 g, 4.0 mmol), in methanol (50 ml) was heated under reflux for 5 h. The clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) to yield colourless plates of (I). Yield 0.860 g, 78%, m.p. 422 K. Analysis, calculated for C14H12Br2N2O4Sn: C 30.53, H 2.20, N 5.09%; found: C 30.56, H 2.15, N 5.13%.

Refinement

The H atoms were included in the riding model approximation with C—H 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). N1a is at the symmetry position (x, y + 1, z).
Fig. 2.
Polymeric chain formation in (I). H atoms omitted for clarity.

Crystal data

[Sn(CH3)2(C6H3BrNO2)2]Z = 2
Mr = 550.77F000 = 524
Triclinic, P1Dx = 2.092 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.579 (4) ÅCell parameters from 1572 reflections
b = 8.212 (5) Åθ = 2.6–25.2º
c = 14.894 (8) ŵ = 6.05 mm1
α = 74.962 (7)ºT = 298 (2) K
β = 77.733 (8)ºPlate, colourless
γ = 88.642 (8)º0.27 × 0.12 × 0.02 mm
V = 874.4 (8) Å3

Data collection

Siemens SMART CCD diffractometer3165 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 298(2) Kθmax = 25.5º
ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→9
Tmin = 0.292, Tmax = 0.889k = −9→9
4540 measured reflectionsl = −15→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.162  w = 1/[σ2(Fo2) + (0.1072P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3165 reflectionsΔρmax = 3.01 e Å3
210 parametersΔρmin = −1.02 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.27918 (6)0.22587 (5)0.41226 (3)0.0314 (2)
N10.3215 (9)−0.4573 (7)0.2957 (5)0.0385 (14)
N20.1125 (16)0.0212 (13)0.8575 (6)0.085 (3)
O10.2868 (8)−0.0342 (6)0.4001 (4)0.0437 (13)
O20.3393 (9)0.1381 (6)0.2569 (4)0.0515 (15)
O30.2327 (8)0.3727 (6)0.5412 (4)0.0471 (14)
O40.2194 (7)0.0988 (6)0.5634 (4)0.0414 (12)
C10.3192 (11)−0.0074 (9)0.3115 (6)0.0389 (17)
C20.3315 (10)−0.1571 (9)0.2713 (5)0.0358 (16)
C30.3136 (10)−0.3225 (9)0.3298 (6)0.0371 (16)
H30.2955−0.33840.39530.045*
C40.3463 (12)−0.4365 (10)0.2031 (6)0.048 (2)
H40.3519−0.53140.17950.057*
C50.3641 (12)−0.2788 (10)0.1398 (6)0.047 (2)
C60.3554 (13)−0.1378 (10)0.1752 (6)0.048 (2)
H60.3657−0.03030.13390.058*
C70.2118 (11)0.2291 (10)0.5950 (6)0.0393 (17)
C80.1759 (11)0.2050 (10)0.7006 (5)0.0388 (17)
C90.1421 (14)0.0468 (12)0.7643 (7)0.060 (2)
H90.1402−0.04640.73990.072*
C100.1141 (17)0.1545 (19)0.8910 (7)0.085 (4)
H100.09200.13890.95660.102*
C110.1475 (13)0.3180 (14)0.8323 (7)0.061 (3)
C120.1766 (12)0.3431 (11)0.7366 (6)0.047 (2)
H120.19660.45140.69630.056*
C130.0130 (11)0.2696 (11)0.3972 (6)0.0472 (19)
H13A−0.03140.36200.42300.071*
H13B−0.06110.17020.43070.071*
H13C0.00910.29660.33100.071*
C140.5570 (10)0.2598 (11)0.3969 (7)0.051 (2)
H14A0.61370.29010.33050.076*
H14B0.60550.15680.42820.076*
H14C0.57940.34800.42490.076*
Br10.3949 (2)−0.25908 (15)0.00921 (7)0.0939 (5)
Br20.1448 (2)0.5021 (2)0.88551 (10)0.1127 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0359 (3)0.0229 (3)0.0347 (3)0.00097 (18)−0.0081 (2)−0.0057 (2)
N10.051 (4)0.022 (3)0.042 (4)−0.001 (3)−0.013 (3)−0.005 (3)
N20.132 (9)0.071 (6)0.042 (5)−0.018 (6)−0.022 (5)0.008 (5)
O10.065 (4)0.026 (3)0.038 (3)0.000 (2)−0.008 (3)−0.008 (2)
O20.083 (5)0.021 (3)0.047 (3)0.000 (3)−0.011 (3)−0.004 (2)
O30.069 (4)0.026 (3)0.045 (3)0.000 (2)−0.013 (3)−0.006 (2)
O40.053 (3)0.030 (3)0.041 (3)0.003 (2)−0.012 (2)−0.008 (2)
C10.049 (5)0.025 (4)0.042 (5)0.001 (3)−0.006 (3)−0.009 (3)
C20.047 (4)0.027 (4)0.036 (4)−0.004 (3)−0.013 (3)−0.009 (3)
C30.047 (4)0.028 (4)0.037 (4)0.005 (3)−0.011 (3)−0.009 (3)
C40.065 (6)0.031 (4)0.050 (5)−0.003 (4)−0.016 (4)−0.013 (4)
C50.068 (6)0.038 (4)0.036 (4)−0.008 (4)−0.011 (4)−0.011 (4)
C60.074 (6)0.028 (4)0.043 (5)−0.001 (4)−0.016 (4)−0.006 (3)
C70.048 (5)0.029 (4)0.042 (4)0.000 (3)−0.008 (3)−0.012 (3)
C80.041 (4)0.043 (4)0.031 (4)0.002 (3)−0.006 (3)−0.009 (3)
C90.080 (7)0.052 (5)0.044 (5)−0.003 (5)−0.015 (5)−0.003 (4)
C100.091 (9)0.129 (12)0.025 (5)−0.014 (7)−0.015 (5)0.000 (6)
C110.058 (6)0.075 (7)0.049 (6)−0.018 (5)−0.003 (4)−0.022 (5)
C120.058 (5)0.048 (5)0.034 (4)0.003 (4)−0.004 (4)−0.013 (4)
C130.042 (5)0.046 (5)0.054 (5)−0.001 (3)−0.010 (4)−0.013 (4)
C140.029 (4)0.049 (5)0.076 (6)0.005 (3)−0.010 (4)−0.019 (4)
Br10.1824 (15)0.0638 (7)0.0358 (6)−0.0216 (8)−0.0196 (7)−0.0141 (5)
Br20.1363 (13)0.1431 (14)0.0718 (9)−0.0287 (10)0.0096 (8)−0.0741 (10)

Geometric parameters (Å, °)

Sn1—C132.089 (8)C4—C51.380 (11)
Sn1—C142.086 (8)C4—H40.9300
Sn1—O12.189 (5)C5—C61.387 (11)
Sn1—O22.546 (6)C5—Br11.873 (8)
Sn1—O32.482 (6)C6—H60.9300
Sn1—O42.175 (5)C7—C81.499 (11)
Sn1—N1i2.710 (6)C8—C121.376 (11)
N1—C41.319 (11)C8—C91.388 (12)
N1—C31.327 (9)C9—H90.9300
N1—Sn1ii2.710 (6)C10—C111.394 (16)
N2—C101.317 (16)C10—H100.9300
N2—C91.319 (13)C11—C121.356 (12)
O1—C11.251 (9)C11—Br21.878 (10)
O2—C11.250 (9)C12—H120.9300
O3—C71.233 (9)C13—H13A0.9600
O4—C71.272 (9)C13—H13B0.9600
C1—C21.493 (10)C13—H13C0.9600
C2—C61.370 (11)C14—H14A0.9600
C2—C31.403 (10)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C13—Sn1—O197.0 (3)C5—C4—H4118.9
C13—Sn1—O288.1 (3)C4—C5—C6118.7 (8)
C13—Sn1—O390.5 (3)C4—C5—Br1119.8 (6)
C13—Sn1—O497.5 (3)C6—C5—Br1121.5 (6)
C14—Sn1—O196.4 (3)C2—C6—C5119.9 (8)
C14—Sn1—O289.2 (3)C2—C6—H6120.1
C14—Sn1—O388.3 (3)C5—C6—H6120.1
C13—Sn1—C14161.4 (4)O3—C7—O4121.8 (7)
C14—Sn1—O497.1 (3)O3—C7—C8119.9 (7)
O1—Sn1—O254.55 (18)O4—C7—C8118.3 (7)
O1—Sn1—O481.98 (19)O3—C7—Sn167.9 (4)
O4—Sn1—O355.59 (18)O4—C7—Sn153.9 (4)
O1—Sn1—O3137.54 (19)C8—C7—Sn1172.1 (5)
O4—Sn1—O2136.52 (18)C12—C8—C9118.2 (8)
O3—Sn1—O2167.88 (17)C12—C8—C7119.6 (7)
C13—Sn1—N1i80.1 (3)C9—C8—C7122.2 (8)
C14—Sn1—N1i81.3 (3)N2—C9—C8123.7 (9)
O1—Sn1—N1i138.4 (2)N2—C9—H9118.2
O2—Sn1—N1i83.81 (18)C8—C9—H9118.2
O3—Sn1—N1i84.09 (19)N2—C10—C11122.7 (9)
O4—Sn1—N1i139.66 (19)N2—C10—H10118.6
C4—N1—C3119.2 (6)C11—C10—H10118.6
C4—N1—Sn1ii119.2 (5)C12—C11—C10119.4 (10)
C3—N1—Sn1ii121.6 (5)C12—C11—Br2120.3 (8)
C10—N2—C9117.5 (9)C10—C11—Br2120.3 (8)
C1—O1—Sn199.8 (4)C11—C12—C8118.5 (8)
C1—O2—Sn183.2 (5)C11—C12—H12120.7
C7—O3—Sn184.7 (5)C8—C12—H12120.7
C7—O4—Sn197.9 (5)Sn1—C13—H13A109.5
O2—C1—O1122.5 (7)Sn1—C13—H13B109.5
O2—C1—C2119.9 (7)H13A—C13—H13B109.5
O1—C1—C2117.6 (7)Sn1—C13—H13C109.5
C6—C2—C3117.2 (7)H13A—C13—H13C109.5
C6—C2—C1121.0 (7)H13B—C13—H13C109.5
C3—C2—C1121.8 (7)Sn1—C14—H14A109.5
N1—C3—C2122.8 (7)Sn1—C14—H14B109.5
N1—C3—H3118.6H14A—C14—H14B109.5
C2—C3—H3118.6Sn1—C14—H14C109.5
N1—C4—C5122.2 (7)H14A—C14—H14C109.5
N1—C4—H4118.9H14B—C14—H14C109.5
C14—Sn1—O1—C1−84.8 (5)C4—C5—C6—C20.7 (14)
C13—Sn1—O1—C182.3 (5)Br1—C5—C6—C2179.5 (6)
O4—Sn1—O1—C1178.9 (5)Sn1—O3—C7—O4−1.2 (8)
O3—Sn1—O1—C1−179.2 (4)Sn1—O3—C7—C8178.9 (7)
O2—Sn1—O1—C1−0.4 (5)Sn1—O4—C7—O31.4 (9)
C7—Sn1—O1—C1−180.0 (5)Sn1—O4—C7—C8−178.7 (6)
C14—Sn1—O2—C198.8 (5)C14—Sn1—C7—O381.1 (5)
C13—Sn1—O2—C1−99.6 (5)C13—Sn1—C7—O3−81.8 (5)
O4—Sn1—O2—C1−0.7 (6)O4—Sn1—C7—O3−178.7 (8)
O1—Sn1—O2—C10.4 (5)O1—Sn1—C7—O3178.9 (5)
O3—Sn1—O2—C1176.7 (8)O2—Sn1—C7—O3177.7 (7)
C7—Sn1—O2—C11.7 (11)C14—Sn1—C7—O4−100.1 (5)
C14—Sn1—O3—C7−99.1 (5)C13—Sn1—C7—O496.9 (5)
C13—Sn1—O3—C799.5 (5)O1—Sn1—C7—O4−2.4 (5)
O4—Sn1—O3—C70.7 (5)O3—Sn1—C7—O4178.7 (8)
O1—Sn1—O3—C7−1.5 (6)O2—Sn1—C7—O4−3.6 (11)
O2—Sn1—O3—C7−177.1 (8)C14—Sn1—C7—C8−92 (4)
C14—Sn1—O4—C782.3 (5)C13—Sn1—C7—C8105 (4)
C13—Sn1—O4—C7−86.2 (5)O4—Sn1—C7—C88(4)
O1—Sn1—O4—C7177.8 (5)O1—Sn1—C7—C86(4)
O3—Sn1—O4—C7−0.7 (4)O3—Sn1—C7—C8−173 (4)
O2—Sn1—O4—C7178.6 (4)O2—Sn1—C7—C85(4)
Sn1—O2—C1—O1−0.6 (8)O3—C7—C8—C12−3.6 (12)
Sn1—O2—C1—C2178.6 (7)O4—C7—C8—C12176.5 (7)
Sn1—O1—C1—O20.7 (9)Sn1—C7—C8—C12169 (4)
Sn1—O1—C1—C2−178.6 (6)O3—C7—C8—C9176.6 (8)
O2—C1—C2—C6−3.4 (12)O4—C7—C8—C9−3.3 (12)
O1—C1—C2—C6175.9 (8)Sn1—C7—C8—C9−11 (4)
O2—C1—C2—C3178.6 (7)C10—N2—C9—C80.6 (18)
O1—C1—C2—C3−2.1 (12)C12—C8—C9—N2−0.8 (15)
C4—N1—C3—C2−0.3 (12)C7—C8—C9—N2179.1 (10)
C6—C2—C3—N10.9 (12)C9—N2—C10—C11−0.8 (19)
C1—C2—C3—N1179.0 (7)N2—C10—C11—C121.2 (18)
C3—N1—C4—C5−0.1 (13)N2—C10—C11—Br2179.3 (10)
N1—C4—C5—C6−0.1 (14)C10—C11—C12—C8−1.4 (15)
N1—C4—C5—Br1−178.9 (6)Br2—C11—C12—C8−179.4 (7)
C3—C2—C6—C5−1.1 (13)C9—C8—C12—C111.2 (13)
C1—C2—C6—C5−179.2 (8)C7—C8—C12—C11−178.7 (8)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2677).

References

  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.
  • Yin, H. D., Li, G., Gao, Z. J. & Xu, H. L. (2006). J. Organomet. Chem.69, 1235–1241.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography