PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m246–m247.
Published online 2007 December 15. doi:  10.1107/S1600536807066202
PMCID: PMC2915164

Poly[diaqua(μ2-3-carboxypyrazine-2-carboxylato)(μ2-pyrazine-2,3-dicarboxylic acid)potassium(I)]

Abstract

The structural unit of the title compound, [K(C6H3N2O4)(C6H4N2O4)(H2O)2]n, consists of one potassium cation, one hydrogen pyrazine-2,3-dicarboxyl­ate anion, one pyrazine-2,3-dicarboxylic acid mol­ecule and two water mol­ecules; this is twice the asymmetric unit, since the potassium cation lies on an inversion centre. Each anion or acid mol­ecule is linked to two potassium cations, while the potassium cation has contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each potassium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid retains its H atom, which forms a hydrogen bond to a coordinated water mol­ecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H(...)O hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by O—H(...)O and O—H(...)N hydrogen bonds in which water acts as the donor.

Related literature

For related literature, see: Clegg & Liddle (2004 [triangle]); Cuesta et al. (2003 [triangle]); Ptasiewicz-Bak & Leciejewicz (1997a [triangle],b [triangle]); Starosta & Leciejewicz (2005 [triangle]); Takusagawa & Shimada (1973 [triangle]); Tombul et al. (2006 [triangle], 2007 [triangle]). Richard et al. (1973 [triangle]). Nepveu et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m246-scheme1.jpg

Experimental

Crystal data

  • [K(C6H3N2O4)(C6H4N2O4)(H2O)2]
  • M r = 410.35
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m246-efi1.jpg
  • a = 7.4171 (11) Å
  • b = 8.0252 (12) Å
  • c = 8.1153 (13) Å
  • α = 68.39 (2)°
  • β = 81.18 (1)°
  • γ = 64.24 (2)°
  • V = 404.43 (13) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 303 (2) K
  • 0.40 × 0.36 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
  • Absorption correction: numerical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995 [triangle])] T min = 0.858, T max = 0.947
  • 4541 measured reflections
  • 1639 independent reflections
  • 1357 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.089
  • S = 0.82
  • 1639 reflections
  • 141 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]).; software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066202/cf2158sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066202/cf2158Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Kırıkkale University for the financial support of this research and Professor Dr Hartmut Fuess, Darmstadt University of Technology, for use of the diffractometer.

supplementary crystallographic information

Comment

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. These include the calcium (Ptasiewicz-Bak- & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak- H. & Leciejewicz, 1997b), sodium (Tombul et al., 2006) and caesium (Tombul et al., 2007) complexes. We present here the synthesis and crystal structure of the hydrated potassium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

The structural unit of the title compound, (I), contains one potassium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice the asymmetric unit, as the potassium ion lies on an inversion centre. Pyrazine-2,3-dicarboxylic acid is, on average, only half deprotonated at one of the carboxylate groups (O1) and together with the symmetry-related oxygen atom (O1v) which is also half deprotonated, completes the charge balance of the cation. In the crystal structure, the anion or acid molecule is linked to two potassium cations, while the K+ cation is surrounded by four organic ligands, two of which are coordinated by utilizing both N and O atoms and the other two are coordinated solely by O atoms. In addition, each potassium cation is coordinated by two water molecules, achieving a coordination number of eight. The primary coordination comprises six oxygen atoms, together with two nitrogen atoms. The planes of the carboxylic/carboxylate groups (O4/C5/O1) and (O2/C6/O5) form dihedral angles with the ring plane of 54.33 (14) and 53.75 (14)°, respectively. The K—O distances are in the range 2.877 (2) Å to 3.089 (2) Å, in accordance with the corresponding values reported for other potassium complexes (Clegg & Liddle, 2004; Cuesta et al., 2003).

In the crystal structure, an asymmetric strong hydrogen bond occurs, linking carboxylate O atoms (Table 2). Atom H1 is involved in this bond and maintains the charge balance within the structure. The ordered carboxyl group forms a hydrogen bond in which water serves as acceptor. The water molecules are involved in normal, slightly bent, hydrogen bonds with hydrogen pyrazine-2,3-dicarboxylate (Table 2); the acceptors are carboxylate O atoms and N atoms of the aromatic ring.

Experimental

K2CO3 (346 mg, 2.5 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine-2,3-dicarboxylic acid (1680 mg, 10 mmol), until no further bubbles formed. The reaction mixture gave a colourless and clear solution which was stirred at 333 K for 2.5 h, until it solidified. The solid product was redissolved in water (10 ml) and allowed to stand for a week at room temperature, after which transparent fine crystals were harvested.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically and treated as riding, with C—H in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). O-bound H atoms were refined freely.

Figures

Fig. 1.
A segment of the structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry Codes: (ii) -x + 1, -y, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x - 1, y + 1, z.]
Fig. 2.
A packing diagram for (I). Dashed lines indicate hydrogen bonds. (H1A and H2 are omitted for clarity). [Symmetry Codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x + 1, y - 1, z + 1.]

Crystal data

[K(C6H3N2O4)(C6H4N2O4)(H2O)2]Z = 1
Mr = 410.35F000 = 210
Triclinic, P1Dx = 1.685 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.4171 (11) ÅCell parameters from 2574 reflections
b = 8.0252 (12) Åθ = 2.7–27.5º
c = 8.1153 (13) ŵ = 0.40 mm1
α = 68.39 (2)ºT = 303 (2) K
β = 81.18 (1)ºPrism, colorless
γ = 64.24 (2)º0.40 × 0.36 × 0.14 mm
V = 404.43 (13) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector1639 independent reflections
Radiation source: Enhance (Mo) X-ray Source1357 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
Detector resolution: 8.4012 pixels mm-1θmax = 26.4º
T = 303(2) Kθmin = 2.7º
ω and [var phi] scansh = −9→9
Absorption correction: numerical[using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]k = −9→9
Tmin = 0.858, Tmax = 0.947l = −10→10
4541 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1925P] where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max < 0.001
1639 reflectionsΔρmax = 0.30 e Å3
141 parametersΔρmin = −0.24 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2243 (2)−0.0442 (2)0.6857 (2)0.0317 (4)
H1A0.0951−0.01400.65520.038*
C20.3500 (2)−0.2386 (2)0.7694 (2)0.0335 (4)
H20.3046−0.33580.79050.040*
C30.5925 (2)−0.1443 (2)0.78702 (18)0.0249 (3)
C40.4681 (2)0.0507 (2)0.69820 (18)0.0236 (3)
C50.5421 (2)0.2104 (2)0.6487 (2)0.0289 (3)
C60.8033 (2)−0.2156 (2)0.8493 (2)0.0277 (3)
N10.28268 (17)0.10040 (18)0.64756 (16)0.0281 (3)
N20.53451 (18)−0.28984 (18)0.82048 (17)0.0310 (3)
O10.41860 (17)0.38402 (16)0.56448 (17)0.0394 (3)
H10.476 (7)0.455 (6)0.533 (5)0.039 (11)*0.50
O20.94651 (16)−0.29530 (18)0.77161 (16)0.0392 (3)
O30.14687 (17)0.66521 (18)0.15762 (17)0.0407 (3)
H3A0.195 (3)0.727 (3)0.190 (3)0.057 (6)*
H3B0.245 (2)0.563 (2)0.149 (3)0.057 (6)*
O40.71570 (17)0.16296 (17)0.68558 (19)0.0476 (4)
O50.80518 (19)−0.1943 (2)1.00104 (17)0.0504 (4)
H50.925 (4)−0.241 (4)1.038 (3)0.065 (7)*
K10.00000.50000.50000.0471 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0200 (7)0.0376 (8)0.0396 (8)−0.0125 (6)−0.0024 (6)−0.0137 (7)
C20.0279 (8)0.0336 (8)0.0424 (9)−0.0165 (6)0.0010 (6)−0.0120 (7)
C30.0220 (7)0.0276 (7)0.0250 (7)−0.0091 (6)−0.0002 (5)−0.0101 (5)
C40.0213 (7)0.0259 (7)0.0239 (7)−0.0076 (6)−0.0016 (5)−0.0107 (5)
C50.0255 (7)0.0271 (7)0.0356 (8)−0.0088 (6)−0.0030 (6)−0.0134 (6)
C60.0236 (7)0.0241 (7)0.0329 (8)−0.0082 (6)−0.0042 (6)−0.0075 (6)
N10.0210 (6)0.0293 (6)0.0322 (7)−0.0067 (5)−0.0031 (5)−0.0116 (5)
N20.0253 (6)0.0274 (6)0.0377 (7)−0.0107 (5)−0.0017 (5)−0.0079 (5)
O10.0301 (6)0.0261 (6)0.0558 (8)−0.0121 (5)−0.0066 (5)−0.0039 (5)
O20.0221 (5)0.0465 (7)0.0535 (7)−0.0108 (5)0.0004 (5)−0.0257 (6)
O30.0316 (6)0.0372 (7)0.0555 (8)−0.0072 (5)−0.0149 (5)−0.0206 (6)
O40.0308 (6)0.0333 (6)0.0824 (10)−0.0118 (5)−0.0192 (6)−0.0174 (6)
O50.0297 (6)0.0743 (9)0.0417 (7)−0.0057 (6)−0.0116 (5)−0.0282 (6)
K10.0338 (3)0.0339 (3)0.0456 (3)−0.0005 (2)−0.0012 (2)0.0006 (2)

Geometric parameters (Å, °)

C1—N11.327 (2)N1—K12.8655 (15)
C1—C21.383 (2)O1—K12.8995 (12)
C1—H1A0.9300O1—H10.80 (4)
C2—N21.331 (2)O3—K12.8771 (15)
C2—H20.9300O3—H3A0.85 (2)
C3—N21.3381 (19)O3—H3B0.848 (9)
C3—C41.392 (2)O5—H50.86 (3)
C3—C61.5097 (19)K1—N1i2.8655 (15)
C4—N11.3397 (18)K1—O3i2.8771 (15)
C4—C51.507 (2)K1—O1i2.8995 (12)
C5—O41.2248 (18)K1—O2ii3.0897 (13)
C5—O11.2760 (19)K1—O2iii3.0897 (13)
C6—O21.1983 (19)K1—H3A3.09 (2)
C6—O51.3073 (19)
N1—C1—C2121.91 (13)N1i—K1—O372.84 (4)
N1—C1—H1A119.0N1—K1—O3107.16 (4)
C2—C1—H1A119.0O3i—K1—O3180.0
N2—C2—C1121.64 (14)N1i—K1—O1i55.92 (4)
N2—C2—H2119.2N1—K1—O1i124.08 (4)
C1—C2—H2119.2O3i—K1—O1i76.02 (4)
N2—C3—C4121.58 (13)O3—K1—O1i103.98 (4)
N2—C3—C6113.19 (12)N1i—K1—O1124.08 (4)
C4—C3—C6125.20 (13)N1—K1—O155.92 (4)
N1—C4—C3121.03 (13)O3i—K1—O1103.98 (4)
N1—C4—C5118.15 (13)O3—K1—O176.02 (4)
C3—C4—C5120.76 (13)O1i—K1—O1180.000 (1)
O4—C5—O1125.67 (14)N1i—K1—O2ii107.44 (4)
O4—C5—C4118.05 (13)N1—K1—O2ii72.56 (4)
O1—C5—C4116.21 (13)O3i—K1—O2ii116.00 (3)
O2—C6—O5126.25 (14)O3—K1—O2ii64.00 (3)
O2—C6—C3121.86 (13)O1i—K1—O2ii81.35 (3)
O5—C6—C3111.63 (13)O1—K1—O2ii98.65 (4)
C1—N1—C4117.01 (13)N1i—K1—O2iii72.56 (4)
C1—N1—K1119.50 (9)N1—K1—O2iii107.44 (4)
C4—N1—K1123.12 (9)O3i—K1—O2iii64.00 (3)
C2—N2—C3116.78 (13)O3—K1—O2iii116.00 (3)
C5—O1—K1125.42 (10)O1i—K1—O2iii98.65 (4)
C5—O1—H1109 (3)O1—K1—O2iii81.35 (4)
K1—O1—H1126 (3)O2ii—K1—O2iii180.00 (2)
C6—O2—K1iv132.38 (10)N1i—K1—H3A70.6 (3)
K1—O3—H3A96.3 (15)N1—K1—H3A109.4 (3)
K1—O3—H3B99.8 (15)O3i—K1—H3A164.1 (2)
H3A—O3—H3B106.6 (13)O3—K1—H3A15.9 (2)
C6—O5—H5111.0 (16)O1i—K1—H3A112.9 (3)
N1i—K1—N1180.0O1—K1—H3A67.1 (3)
N1i—K1—O3i107.16 (4)O2ii—K1—H3A79.1 (2)
N1—K1—O3i72.84 (4)O2iii—K1—H3A100.9 (2)
N1—C1—C2—N21.9 (2)O4—C5—O1—K1−175.29 (12)
N2—C3—C4—N12.1 (2)C4—C5—O1—K17.78 (19)
C6—C3—C4—N1179.87 (13)O5—C6—O2—K1iv154.68 (13)
N2—C3—C4—C5−174.99 (13)C3—C6—O2—K1iv−19.1 (2)
C6—C3—C4—C52.8 (2)C1—N1—K1—O3i61.01 (11)
N1—C4—C5—O4−175.63 (14)C4—N1—K1—O3i−111.76 (11)
C3—C4—C5—O41.5 (2)C1—N1—K1—O3−118.99 (11)
N1—C4—C5—O11.5 (2)C4—N1—K1—O368.24 (11)
C3—C4—C5—O1178.67 (13)C1—N1—K1—O1i1.94 (12)
N2—C3—C6—O274.92 (18)C4—N1—K1—O1i−170.83 (10)
C4—C3—C6—O2−103.06 (18)C1—N1—K1—O1−178.06 (12)
N2—C3—C6—O5−99.65 (16)C4—N1—K1—O19.17 (10)
C4—C3—C6—O582.37 (18)C1—N1—K1—O2ii−64.29 (11)
C2—C1—N1—C4−1.8 (2)C4—N1—K1—O2ii122.94 (11)
C2—C1—N1—K1−174.99 (12)C1—N1—K1—O2iii115.71 (11)
C3—C4—N1—C1−0.1 (2)C4—N1—K1—O2iii−57.06 (11)
C5—C4—N1—C1177.00 (12)C5—O1—K1—N1i171.23 (11)
C3—C4—N1—K1172.82 (10)C5—O1—K1—N1−8.77 (11)
C5—C4—N1—K1−10.06 (17)C5—O1—K1—O3i48.85 (13)
C1—C2—N2—C30.0 (2)C5—O1—K1—O3−131.15 (13)
C4—C3—N2—C2−1.9 (2)C5—O1—K1—O2ii−70.80 (13)
C6—C3—N2—C2−179.99 (12)C5—O1—K1—O2iii109.20 (13)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x−1, y+1, z; (iv) x+1, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O4v0.85 (2)1.899 (10)2.7334 (17)167 (2)
O3—H3B···N2ii0.848 (9)2.035 (10)2.8701 (19)168 (2)
O5—H5···O3vi0.86 (3)1.76 (3)2.5994 (17)168 (2)
O1—H1···O1v0.80 (4)1.68 (4)2.480 (2)171 (5)

Symmetry codes: (v) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (vi) x+1, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2158).

References

  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Clegg, W. & Liddle, S. T. (2004). Acta Cryst. E60, m1495–m1497.
  • Cuesta, R., Glidewell, C., López, R. & Low, J. N. (2003). Acta Cryst. C59, m315–m318. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nepveu, F., Berkaoui, M. ’H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis CCD Versions 1.171.31.4 Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem.71, 493–500.
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem.71, 1603–1610.
  • Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem.58, 963–968.
  • Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126.
  • Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.
  • Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.
  • Westrip, S. P. (2008). publCIF. In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography