PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m242.
Published online 2007 December 21. doi:  10.1107/S1600536807067189
PMCID: PMC2915161

trans-Bis[1,2-bis­(dimethyl­phosphino)­ethane]­bromido­nitrosyl­tungsten(0)

Abstract

The crystal structure of the title compound, [WBr(NO)(C6H16P2)2], reveals a distorted octa­hedral geometry around the W centre. The W atom lies on a special position at an inversion centre (the Br and NO ligands are equally disordered). The bis­(dimethyl­phosphino)ethane ligand is also severely disordered (site occupancy factors 0.52 and 0.48). This is the first structure of a tungsten species with nitrosyl and bromide ligands.

Related literature

For related nitro­syltetra­kis(trimethyl­phosphine)tungsten complexes, see: Chen et al. (2005 [triangle]). For bis[1,2-bis(dimethyl­phosphino)ethane]bromidotungsten complexes, see: Manna et al. (1992 [triangle]); Cotton et al. (1989 [triangle]). For carbonyl­phosphine tungsten complexes, see: Drew et al. (1982 [triangle]); Cotton & Meadows (1984 [triangle]). For synthesis of the precursors of the title compound, see: Johnson (1967 [triangle]); Berg & Dehnicke (1985 [triangle]). For the Cambridge Structural Database (Release 2006, Version 5.28), see Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m242-scheme1.jpg

Experimental

Crystal data

  • [WBr(NO)(C6H16P2)2]
  • M r = 594.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m242-efi1.jpg
  • a = 8.8909 (14) Å
  • b = 12.5386 (16) Å
  • c = 12.823 (2) Å
  • β = 130.639 (14)°
  • V = 1084.8 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 7.46 mm−1
  • T = 183 (2) K
  • 0.45 × 0.39 × 0.28 mm

Data collection

  • Stoe IPDS diffractometer
  • Absorption correction: numerical (Coppens et al., 1965 [triangle]) T min = 0.086, T max = 0.213
  • 19322 measured reflections
  • 1901 independent reflections
  • 1415 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.089
  • S = 0.92
  • 1901 reflections
  • 133 parameters
  • 45 restraints
  • H-atom parameters constrained
  • Δρmax = 2.37 e Å−3
  • Δρmin = −1.59 e Å−3

Data collection: IPDS Software (Stoe & Cie, 1999 [triangle]); cell refinement: IPDS Software; data reduction: X-RED in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807067189/ya2063sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067189/ya2063Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Zürich and the Swiss National Science Foundation for financial support.

supplementary crystallographic information

Comment

According to the Cambridge Structural Database (Release 2006, Version 5.28; Allen, 2002), the title compound (I) is the first example of the structurally studied tungsten species with nitrosyl and bromide ligands. The tungsten atom lies on a special position in the inversion centre: the nitrosyl group and the halide ligand in trans-position to each other are disordered. The bidentate dmpe ligand (dmpe = 1,2-bis(dimethylphosphino)ethane) is also disordered over two positions which share common locations of the P atoms, but have different locations for all C atoms; the occupancy of the major component of the disorder was refined to 0.52 (1), which indicates, that both components are effectively equally represented in the structure.

The tungsten atom has a distorted octahedral coordination (Fig. 1). The W1—Br1 distance of 2.555 (3) Å is clearly shorter than in the related bromo-bis(1,2-bis(dimethylphosphino)ethane)tungsten complexes, with the bromide ligand in trans position to the triply bonded C—Ph ligand [2.744 (2) Å and 2.702 (2) Å in Manna et al. (1992)] or to an oxo ligand [2.678 (2) Å in Cotton et al. (1989)]. Nevertheless, the reported value is very similar to the bond distances observed in (PPh3)2Br2(CO)2W, where bromide is in trans position to the carbonyl ligand [2.55–2.57 Å in Drew et al. (1982), Cotton & Meadows (1984)].

Experimental

[W(Br)2(NO)(dmpe)2]Br was prepared from the complex [W(Br)3(NO)(CH3CN)2], which is easily synthesized by the reaction of W(Br)5 with gaseous NO in dibromomethane in the presence of acetonitrile at room temperature according to the literature procedure (Johnson, 1967; Berg & Dehnicke, 1985). 3.00 g (5.14 mmol) of W(Br)5 and 0.54 ml (10.28 mmol) of acetonitrile were dissolved in 100 ml of dibromomethane in a 250 ml three-necked flask. Nitric oxide was passed through the solution, which was stirred at room temperature until the black colour of the solution turned to a light green precipitate after ca 1 h. The solution was concentrated to one third of its original volume and the addition of pentane (10 ml) afforded a green–yellow voluminous precipitate, which was filtered off, washed with pentane and dried in vacuum. Then [W(Br)2(NO)(dmpe)2]Br (0.188 g, 0.25 mmol) was added to a stirred suspension of 1% sodium amalgam (0.026 g of Na, 1.12 mmol) in 20 ml of tetrahydrofurane. The mixture was then stirred overnight at room temperature. The solution was filtered off, separated from the mercury-containing residue, and the solvent was removed under vacuum. The residue was washed with pentane (10 ml x 2) and extracted with tetrahydrofurane (20 ml), concentrated and cooled to -30°C overnight yielding the title compound in the form of yellow crystals.

Yield: 0.126 g (85%).

IR (cm-1, CH2Cl2): (NO) 1535.

1H NMR (200.0 MHz, THF-d8, 25°C): d 1.55 (m, 4H, P(CH2)2P); 1.49 (s, 24H, PCH3) and 1.29 (m, 4H, P(CH2)2P).

31P{1H} NMR (80.9 MHz, THF-d8, 25°C): d 17.5 (s, 1JPW = 380 Hz).

13C{1H} NMR (50.3 MHz, THF-d8, 25°C): d 32.4 (m, P(CH2)2P); 15.1 (m, PCH3); 14.4 (m, PCH3).

Anal. Calcd for C12H32BrNOP4W: C, 24.25; H, 5.39; N, 2.36. Found: C,24.60; H, 5.43; N, 2.28.

Refinement

The initial refinement of the structure produced very large thermal parameters for bromine, nitrogen, oxygen and all carbon atoms, especially for C2, C5 and C6 (> 0.175), and inadequate geometry of the dmpe ligand with coplanar P1, C1, C2 and P2 atoms. The location of the highest residual peaks showed unambigously that each of the Br, N, O and C atoms are distributed over two sites. The introduction of the disordered model, with respect to NO/Br and all carbon atoms of dmpe, yielded significantly lower discrepancy factors and ensured reasonable geometry of the dmpe ligand. Nevertheless, the highly disordered refinement model prompted us to consider possibility of alternative space groups (P2/c, P2 and Pc). However, none of them allowed to carry out reasonable refinement of the structure. Therefore we ended up with the P21/c refinement with significantly disordered model.

All hydrogen atoms were included at calculated positions and treated as riding atoms with C—H distances of 0.96–0.97 Å and Uiso(H) = 1.3Ueq(C). Positional disorders were refined with an occupancy factor of 0.5 for the trans NO and Br ligands since the metal atom occupies a special position in the inversion centre; the occupancy factors for two components of the dmpe disorder were deterimined by the refinement. The temperature factors of the C atoms of the dmpe ligand were refined with the SIMU, DELU and EADP restraints (Sheldrick, 1997). The largest positive and negative residual peaks are located at about 0.9 Å from P2 and W1, respectively; no chemical meaning could be attributed to these features.

Figures

Fig. 1.
The molecular structure of (I) with the atom-labeling scheme (displacement ellipsoids are drawn at the 20% probability level). The unlabeled atoms are derived from the corresponding labeled atoms by the 1 - x, -y, 1 - z symmetry transformation. Only one ...

Crystal data

[WBr(NO)(C6H16P2)2]F000 = 576
Mr = 594.01Dx = 1.819 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7998 reflections
a = 8.8909 (14) Åθ = 3.1–30.3º
b = 12.5386 (16) ŵ = 7.46 mm1
c = 12.823 (2) ÅT = 183 (2) K
β = 130.639 (14)ºBlock, yellow
V = 1084.8 (4) Å30.45 × 0.39 × 0.28 mm
Z = 2

Data collection

Stoe IPDS diffractometer1415 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.076
T = 183(2) Kθmax = 25.0º
[var phi] rotation scanθmin = 3.4º
Absorption correction: numerical(Coppens et al., 1965)h = −10→8
Tmin = 0.086, Tmax = 0.213k = 0→14
19322 measured reflectionsl = 0→15
1901 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0711P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
1901 reflectionsΔρmax = 2.37 e Å3
133 parametersΔρmin = −1.59 e Å3
45 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
W10.50000.00000.50000.03782 (16)
P10.4214 (3)0.02436 (17)0.2816 (2)0.0576 (5)
P20.2435 (3)−0.13470 (15)0.36543 (19)0.0493 (4)
Br10.2422 (4)0.1376 (2)0.4403 (3)0.0554 (6)0.50
N10.693 (3)−0.0969 (14)0.5538 (17)0.056 (4)0.50
O10.822 (3)−0.1666 (17)0.590 (2)0.090 (8)0.50
C1A0.273 (3)−0.0892 (15)0.1748 (19)0.065 (2)0.483 (11)
H1A10.2038−0.07320.07920.085*0.483 (11)
H1A20.3570−0.15070.20140.085*0.483 (11)
C2A0.119 (2)−0.1137 (15)0.1940 (15)0.065 (2)0.483 (11)
H2A10.0427−0.17660.14150.085*0.483 (11)
H2A20.0284−0.05430.16060.085*0.483 (11)
C3A0.631 (3)0.0151 (15)0.286 (2)0.063 (3)0.483 (11)
H3A10.58280.00850.19410.082*0.483 (11)
H3A20.7099−0.04630.33870.082*0.483 (11)
H3A30.71120.07820.32790.082*0.483 (11)
C4A0.292 (3)0.1405 (15)0.185 (3)0.063 (3)0.483 (11)
H4A10.38180.20000.22480.082*0.483 (11)
H4A20.18670.15410.18560.082*0.483 (11)
H4A30.23840.13040.09210.082*0.483 (11)
C5A0.322 (3)−0.2708 (16)0.407 (2)0.063 (3)0.483 (11)
H5A10.2086−0.31670.34960.082*0.483 (11)
H5A20.3872−0.28370.50150.082*0.483 (11)
H5A30.4120−0.28510.39110.082*0.483 (11)
C6A0.034 (3)−0.1313 (15)0.3669 (19)0.063 (3)0.483 (11)
H6A10.0018−0.05860.36800.082*0.483 (11)
H6A20.0735−0.16740.44730.082*0.483 (11)
H6A3−0.0792−0.16630.28620.082*0.483 (11)
C1B0.188 (3)−0.0582 (13)0.1376 (16)0.065 (2)0.517 (11)
H1B10.0688−0.02170.10560.085*0.517 (11)
H1B20.1835−0.06760.06030.085*0.517 (11)
C2B0.206 (3)−0.1678 (12)0.2005 (15)0.065 (2)0.517 (11)
H2B10.3174−0.20780.22400.085*0.517 (11)
H2B20.0858−0.20940.13630.085*0.517 (11)
C3B0.574 (3)−0.0126 (15)0.245 (2)0.075 (3)0.517 (11)
H3B10.4959−0.01650.14770.097*0.517 (11)
H3B20.6320−0.08100.28560.097*0.517 (11)
H3B30.67670.03950.28320.097*0.517 (11)
C4B0.330 (3)0.1570 (14)0.196 (3)0.075 (3)0.517 (11)
H4B10.30940.15580.11290.097*0.517 (11)
H4B20.42580.21070.25670.097*0.517 (11)
H4B30.20680.17280.17500.097*0.517 (11)
C5B0.280 (3)−0.2738 (16)0.422 (2)0.075 (3)0.517 (11)
H5B10.1836−0.31830.34460.097*0.517 (11)
H5B20.2631−0.27940.48890.097*0.517 (11)
H5B30.4106−0.29660.46250.097*0.517 (11)
C6B−0.007 (3)−0.1078 (15)0.282 (2)0.075 (3)0.517 (11)
H6B1−0.0583−0.05680.21020.097*0.517 (11)
H6B2−0.0158−0.07940.34750.097*0.517 (11)
H6B3−0.0822−0.17250.24380.097*0.517 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.0415 (2)0.0316 (2)0.0478 (2)−0.00644 (16)0.03232 (17)−0.00255 (17)
P10.0701 (12)0.0545 (12)0.0644 (11)0.0032 (9)0.0509 (11)0.0073 (9)
P20.0425 (9)0.0415 (10)0.0570 (10)−0.0105 (8)0.0293 (8)0.0000 (8)
Br10.0483 (14)0.0447 (15)0.0639 (14)0.0138 (11)0.0323 (13)0.0059 (12)
N10.062 (11)0.047 (10)0.059 (8)0.013 (8)0.040 (8)0.012 (8)
O10.095 (16)0.086 (15)0.075 (12)0.049 (10)0.049 (12)0.029 (9)
C1A0.066 (6)0.064 (6)0.048 (4)−0.007 (4)0.029 (4)−0.007 (4)
C2A0.066 (6)0.064 (6)0.048 (4)−0.007 (4)0.029 (4)−0.007 (4)
C3A0.068 (6)0.059 (6)0.070 (6)−0.005 (5)0.048 (5)−0.002 (5)
C4A0.068 (6)0.059 (6)0.070 (6)−0.005 (5)0.048 (5)−0.002 (5)
C5A0.068 (6)0.059 (6)0.070 (6)−0.005 (5)0.048 (5)−0.002 (5)
C6A0.068 (6)0.059 (6)0.070 (6)−0.005 (5)0.048 (5)−0.002 (5)
C1B0.066 (6)0.064 (6)0.048 (4)−0.007 (4)0.029 (4)−0.007 (4)
C2B0.066 (6)0.064 (6)0.048 (4)−0.007 (4)0.029 (4)−0.008 (4)
C3B0.079 (7)0.068 (6)0.077 (6)−0.015 (5)0.051 (5)−0.007 (5)
C4B0.079 (7)0.068 (6)0.077 (6)−0.015 (5)0.051 (5)−0.007 (5)
C5B0.079 (7)0.068 (6)0.077 (6)−0.015 (5)0.051 (5)−0.007 (5)
C6B0.079 (7)0.068 (6)0.077 (6)−0.015 (5)0.051 (5)−0.007 (5)

Geometric parameters (Å, °)

W1—N1i1.83 (2)C3A—H3A30.9600
W1—N11.83 (2)C4A—H4A10.9600
W1—P1i2.424 (2)C4A—H4A20.9600
W1—P12.424 (2)C4A—H4A30.9600
W1—P2i2.4302 (18)C5A—H5A10.9600
W1—P22.4302 (18)C5A—H5A20.9600
W1—Br1i2.555 (3)C5A—H5A30.9600
W1—Br12.555 (3)C6A—H6A10.9600
P1—C3B1.76 (2)C6A—H6A20.9600
P1—C4A1.77 (2)C6A—H6A30.9600
P1—C1A1.814 (16)C1B—C2B1.551 (17)
P1—C3A1.833 (18)C1B—H1B10.9700
P1—C4B1.86 (2)C1B—H1B20.9700
P1—C1B1.946 (15)C2B—H2B10.9700
P2—C2A1.720 (15)C2B—H2B20.9700
P2—C6B1.763 (17)C3B—H3B10.9600
P2—C5A1.788 (19)C3B—H3B20.9600
P2—C5B1.836 (19)C3B—H3B30.9600
P2—C6A1.871 (16)C4B—H4B10.9600
P2—C2B1.957 (16)C4B—H4B20.9600
N1—O11.267 (19)C4B—H4B30.9600
C1A—C2A1.566 (18)C5B—H5B10.9600
C1A—H1A10.9700C5B—H5B20.9600
C1A—H1A20.9700C5B—H5B30.9600
C2A—H2A10.9700C6B—H6B10.9600
C2A—H2A20.9700C6B—H6B20.9600
C3A—H3A10.9600C6B—H6B30.9600
C3A—H3A20.9600
N1—W1—Br1176.5 (5)H1A1—C1A—H1A2108.4
O1—N1—W1177.9 (19)C1A—C2A—P2109.3 (12)
N1i—W1—P1i90.8 (5)C1A—C2A—H2A1109.8
N1—W1—P1i89.2 (5)P2—C2A—H2A1109.8
N1—W1—P190.8 (5)C1A—C2A—H2A2109.8
N1i—W1—P189.2 (5)P2—C2A—H2A2109.8
N1i—W1—P2i91.3 (5)H2A1—C2A—H2A2108.3
N1—W1—P2i88.7 (5)P1—C3A—H3A1109.5
P1i—W1—P2i80.57 (7)P1—C3A—H3A2109.5
P1—W1—P2i99.43 (7)P1—C3A—H3A3109.5
N1—W1—P291.3 (5)P1—C4A—H4A1109.5
N1i—W1—P288.7 (5)P1—C4A—H4A2109.5
P1i—W1—P299.43 (7)P1—C4A—H4A3109.5
P1—W1—P280.57 (7)P2—C5A—H5A1109.5
P1i—W1—P1180.0P2—C5A—H5A2109.5
P2i—W1—P2180.0P2—C5A—H5A3109.5
N1i—W1—Br1i176.5 (5)P2—C6A—H6A1109.5
P1i—W1—Br1i92.38 (9)P2—C6A—H6A2109.5
P1—W1—Br1i87.62 (9)P2—C6A—H6A3109.5
P2i—W1—Br1i90.72 (7)C2B—C1B—P1107.1 (10)
P2—W1—Br1i89.28 (7)C2B—C1B—H1B1110.3
P1i—W1—Br187.62 (9)P1—C1B—H1B1110.3
P1—W1—Br192.38 (9)C2B—C1B—H1B2110.3
P2i—W1—Br189.28 (7)P1—C1B—H1B2110.3
P2—W1—Br190.72 (7)H1B1—C1B—H1B2108.5
C4A—P1—C1A107.2 (10)C1B—C2B—P2105.3 (11)
C4A—P1—C3A104.9 (9)C1B—C2B—H2B1110.7
C1A—P1—C3A101.6 (9)P2—C2B—H2B1110.7
C3B—P1—C4B101.4 (10)C1B—C2B—H2B2110.7
C3B—P1—C1B97.8 (9)P2—C2B—H2B2110.7
C4B—P1—C1B97.4 (9)H2B1—C2B—H2B2108.8
C3B—P1—W1125.5 (8)P1—C3B—H3B1109.5
C4A—P1—W1118.7 (10)P1—C3B—H3B2109.5
C1A—P1—W1107.0 (6)H3B1—C3B—H3B2109.5
C3A—P1—W1115.7 (7)P1—C3B—H3B3109.5
C4B—P1—W1118.6 (10)H3B1—C3B—H3B3109.5
C1B—P1—W1110.9 (5)H3B2—C3B—H3B3109.5
C2A—P2—C5A109.0 (9)P1—C4B—H4B1109.5
C6B—P2—C5B104.3 (9)P1—C4B—H4B2109.5
C2A—P2—C6A101.2 (8)H4B1—C4B—H4B2109.5
C5A—P2—C6A102.5 (8)P1—C4B—H4B3109.5
C6B—P2—C2B97.2 (8)H4B1—C4B—H4B3109.5
C5B—P2—C2B95.1 (8)H4B2—C4B—H4B3109.5
C2A—P2—W1109.0 (6)P2—C5B—H5B1109.5
C6B—P2—W1121.8 (6)P2—C5B—H5B2109.5
C5A—P2—W1116.6 (7)H5B1—C5B—H5B2109.5
C5B—P2—W1122.6 (7)P2—C5B—H5B3109.5
C6A—P2—W1117.1 (6)H5B1—C5B—H5B3109.5
C2B—P2—W1109.7 (5)H5B2—C5B—H5B3109.5
Br1i—N1—W1167.8 (18)P2—C6B—H6B1109.5
C2A—C1A—P1108.5 (12)P2—C6B—H6B2109.5
C2A—C1A—H1A1110.0H6B1—C6B—H6B2109.5
P1—C1A—H1A1110.0P2—C6B—H6B3109.5
C2A—C1A—H1A2110.0H6B1—C6B—H6B3109.5
P1—C1A—H1A2110.0H6B2—C6B—H6B3109.5
N1i—W1—P1—C3B162.8 (9)P1i—W1—P2—C5B−52.2 (8)
N1—W1—P1—C3B−17.2 (9)P1—W1—P2—C5B127.8 (8)
P2i—W1—P1—C3B71.6 (8)Br1i—W1—P2—C5B40.1 (8)
P2—W1—P1—C3B−108.4 (8)Br1—W1—P2—C5B−139.9 (8)
Br1i—W1—P1—C3B−18.7 (8)N1i—W1—P2—C6A−38.8 (9)
Br1—W1—P1—C3B161.3 (8)N1—W1—P2—C6A141.2 (9)
N1i—W1—P1—C4A19.6 (9)P1i—W1—P2—C6A51.8 (7)
N1—W1—P1—C4A−160.4 (9)P1—W1—P2—C6A−128.2 (7)
P2i—W1—P1—C4A−71.6 (7)Br1i—W1—P2—C6A144.1 (7)
P2—W1—P1—C4A108.4 (7)Br1—W1—P2—C6A−35.9 (7)
Br1i—W1—P1—C4A−161.9 (7)N1i—W1—P2—C2B107.4 (7)
Br1—W1—P1—C4A18.1 (7)N1—W1—P2—C2B−72.6 (7)
N1i—W1—P1—C1A−101.9 (8)P1i—W1—P2—C2B−162.1 (5)
N1—W1—P1—C1A78.1 (8)P1—W1—P2—C2B17.9 (5)
P2i—W1—P1—C1A167.0 (7)Br1i—W1—P2—C2B−69.8 (5)
P2—W1—P1—C1A−13.0 (7)Br1—W1—P2—C2B110.2 (5)
Br1i—W1—P1—C1A76.7 (7)N1i—W1—Br1—O1i−14 (13)
Br1—W1—P1—C1A−103.3 (7)P1i—W1—Br1—O1i−169 (8)
N1i—W1—P1—C3A145.7 (8)P1—W1—Br1—O1i11 (8)
N1—W1—P1—C3A−34.3 (8)P2i—W1—Br1—O1i111 (8)
P2i—W1—P1—C3A54.6 (7)P2—W1—Br1—O1i−69 (8)
P2—W1—P1—C3A−125.4 (7)P1i—W1—Br1—N1i−155 (8)
Br1i—W1—P1—C3A−35.7 (7)P1—W1—Br1—N1i25 (8)
Br1—W1—P1—C3A144.3 (7)P2i—W1—Br1—N1i125 (8)
N1i—W1—P1—C4B31.1 (9)P2—W1—Br1—N1i−55 (8)
N1—W1—P1—C4B−148.9 (9)P1i—W1—N1—Br1i155 (8)
P2i—W1—P1—C4B−60.0 (8)P1—W1—N1—Br1i−25 (8)
P2—W1—P1—C4B120.0 (8)P2i—W1—N1—Br1i−125 (8)
Br1i—W1—P1—C4B−150.4 (8)P2—W1—N1—Br1i55 (8)
Br1—W1—P1—C4B29.6 (8)C3B—P1—C1A—C2A167.4 (15)
N1i—W1—P1—C1B−80.3 (8)C4A—P1—C1A—C2A−86.4 (16)
N1—W1—P1—C1B99.7 (8)C3A—P1—C1A—C2A163.8 (13)
P2i—W1—P1—C1B−171.5 (6)C4B—P1—C1A—C2A−92.6 (16)
P2—W1—P1—C1B8.5 (6)C1B—P1—C1A—C2A−62 (2)
Br1i—W1—P1—C1B98.2 (6)W1—P1—C1A—C2A42.0 (14)
Br1—W1—P1—C1B−81.8 (6)P1—C1A—C2A—P2−56.4 (16)
N1i—W1—P2—C2A75.3 (9)C6B—P2—C2A—C1A162.2 (16)
N1—W1—P2—C2A−104.7 (9)C5A—P2—C2A—C1A−84.5 (15)
P1i—W1—P2—C2A165.8 (7)C5B—P2—C2A—C1A−100.6 (15)
P1—W1—P2—C2A−14.2 (7)C6A—P2—C2A—C1A167.9 (13)
Br1i—W1—P2—C2A−101.9 (7)C2B—P2—C2A—C1A−52.8 (13)
Br1—W1—P2—C2A78.1 (7)W1—P2—C2A—C1A43.9 (14)
N1i—W1—P2—C6B−4.9 (9)C3B—P1—C1B—C2B92.0 (14)
N1—W1—P2—C6B175.1 (9)C4A—P1—C1B—C2B−161.1 (16)
P1i—W1—P2—C6B85.7 (8)C1A—P1—C1B—C2B41.9 (18)
P1—W1—P2—C6B−94.3 (8)C3A—P1—C1B—C2B93.2 (14)
Br1i—W1—P2—C6B178.0 (8)C4B—P1—C1B—C2B−165.4 (15)
Br1—W1—P2—C6B−2.0 (8)W1—P1—C1B—C2B−40.9 (14)
N1i—W1—P2—C5A−160.8 (9)P1—C1B—C2B—P253.8 (14)
N1—W1—P2—C5A19.2 (9)C2A—P2—C2B—C1B46.2 (13)
P1i—W1—P2—C5A−70.2 (7)C6B—P2—C2B—C1B79.5 (13)
P1—W1—P2—C5A109.8 (7)C5A—P2—C2B—C1B−163.9 (14)
Br1i—W1—P2—C5A22.1 (7)C5B—P2—C2B—C1B−175.4 (13)
Br1—W1—P2—C5A−157.9 (7)C6A—P2—C2B—C1B95.7 (14)
N1i—W1—P2—C5B−142.7 (9)W1—P2—C2B—C1B−48.1 (12)
N1—W1—P2—C5B37.3 (9)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2063).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Berg, A. & Dehnicke, K. (1985). Z. Naturforsch. Teil B, 40, 842–844.
  • Chen, Z., Schmalle, H. W., Fox, T. & Berke, H. (2005). Dalton Trans. pp. 580–587. [PubMed]
  • Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  • Cotton, F. A., Kibala, P. A., McCaleb, C. S. & Sandor, R. B. W. (1989). Acta Cryst. C45, 1126–1128.
  • Cotton, F. A. & Meadows, J. H. (1984). Inorg. Chem.23, 4683–4688.
  • Drew, M. G. B., Brisdon, B. J. & Buttery, A. G. (1982). Acta Cryst. B38, 1598–1601.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Johnson, B. F. G. (1967). J. Chem. Soc. A, 3, 475–478.
  • Manna, J., Gilbert, T. M., Dallinger, R. F., Geib, S. J. & Hopkins, M. D. (1992). J. Am. Chem. Soc.114, 5870–5872.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Stoe & Cie (1999). IPDS Software Version 2.92. Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography