PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m237.
Published online 2007 December 21. doi:  10.1107/S1600536807066950
PMCID: PMC2915157

Poly[di-μ4-benzene-1,4-dicarboxyl­ato-μ6-succinato-diholmium(III)]

Abstract

The title compound, [Ho2(C4H4O4)(C8H4O4)2]n, was synthesized hydro­thermally. The Ho atom is coordinated by four O atoms from four benzene-1,4-dicarboxyl­ate (BDC) anions and four O atoms from three succinate anions, in a distorted square-anti­prismatic coordination geometry. The anti­prisms are bridged by the benzene-1,4-dicarboxyl­ate and succinate anions, into a three-dimensional coordination network. The succinate anions are located on centres of inversion.

Related literature

For related literature, see: Li & Wang (2005 [triangle]); Li et al. (2006 [triangle]); Wang & Li (2005 [triangle]); He et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m237-scheme1.jpg

Experimental

Crystal data

  • [Ho2(C4H4O4)(C8H4O4)2]
  • M r = 387.08
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m237-efi5.jpg
  • a = 13.8147 (3) Å
  • b = 6.7850 (2) Å
  • c = 21.7103 (5) Å
  • V = 2034.97 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 7.79 mm−1
  • T = 291 (2) K
  • 0.18 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.245, T max = 0.682
  • 11598 measured reflections
  • 2411 independent reflections
  • 2140 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015
  • wR(F 2) = 0.042
  • S = 1.06
  • 2411 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.94 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066950/nc2068sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066950/nc2068Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), is isostructural with its [M2(C8H4O4)2(C4H4O4)]n [M = Gd (Wang & Li, 2005), Dy ((Li & Wang, 2005), Nd (Li et al., 2006) and Er (He et al., 2006)] analogues. The Ho3+ ion is located at the center of a distorted square antiprism and is coordinated by four oxygen atoms from four benzene-1,4-dicarboxylate anions and four oxygen atoms from three succinate anions (Fig. 1). The Ho—O bond distances ranging from 2.2851 (2) to 2.5764 (16) Å.

The succinate anions are located on centres of inversion and acts as a bis-chelating ligands for each two symmetry related Ho atoms. Each of the four oxygen atom are additionally connected by Ho atoms into layers which are parallel to the (001) plane. These layers are connected via the benzene-1,4-dicarboxylate anions into a three-dimensional coordination network.

Experimental

A mixture of HoCl3.6H2O (2.00 mmol, 0.74 g), benzene-1,4-dicarboxylic acid (1.0 mmol, 0.16 g), succinic acid (1.0 mmol, 0.10 g), NaOH (6.0 ml, 1 mol/L) and H2O (20.0 ml) was heated in a 35 ml stainless steel reactor with a Teflon liner at 453 K for 48 h. The column-like crystals were filtered and washed with ethanol. Yield: 30% based on Ho.

Refinement

H atoms were included at calculated positions and treated as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The coordination environment of the Ho atom, with the atom-numbering scheme, showing displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) 2 - x, 2 - y, 1 - z; (ii) x, 3/2 - y, z + 1/2; (iii) 3/2 - x, 2 - y, z + 1/2; (iv) 3/2 ...

Crystal data

[Ho2(C4H4O4)(C8H4O4)2]F000 = 1448
Mr = 387.08Dx = 2.527 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 254 reflections
a = 13.8147 (3) Åθ = 2.1–27.1º
b = 6.7850 (2) ŵ = 7.79 mm1
c = 21.7103 (5) ÅT = 291 (2) K
V = 2034.97 (9) Å3Column, orange
Z = 80.18 × 0.15 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer2411 independent reflections
Radiation source: fine-focus sealed tube2140 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 291(2) Kθmax = 28.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −17→16
Tmin = 0.245, Tmax = 0.682k = −7→8
11598 measured reflectionsl = −28→25

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015  w = 1/[σ2(Fo2) + (0.0238P)2 + 0.923P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.94 e Å3
2411 reflectionsΔρmin = −0.60 e Å3
155 parametersExtinction correction: SHELXTL (Bruker, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00060 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ho0.830676 (8)1.016049 (15)0.554834 (5)0.01275 (6)
O10.86282 (15)1.0368 (2)0.45156 (8)0.0198 (4)
O21.01131 (12)0.9282 (3)0.43269 (7)0.0206 (3)
C10.92600 (17)0.9674 (3)0.41630 (11)0.0148 (4)
C20.89870 (17)0.9259 (3)0.35070 (10)0.0177 (5)
C30.96527 (18)0.8440 (4)0.31009 (11)0.0257 (5)
H3A1.02740.81430.32370.031*
C40.93977 (19)0.8064 (4)0.24966 (11)0.0276 (6)
H4A0.98460.75100.22280.033*
C50.84715 (17)0.8514 (3)0.22885 (11)0.0208 (5)
C60.81879 (18)0.8035 (3)0.16377 (11)0.0213 (5)
C70.78017 (19)0.9332 (4)0.26926 (11)0.0259 (5)
H7A0.71810.96340.25550.031*
C80.8056 (2)0.9698 (4)0.32984 (13)0.0244 (5)
H8A0.76051.02400.35680.029*
O30.87624 (13)0.6998 (3)0.13253 (8)0.0284 (4)
O40.73920 (13)0.8685 (3)0.14403 (7)0.0265 (4)
O50.66712 (11)0.8691 (3)0.54719 (8)0.0229 (4)
O60.67647 (11)1.1742 (2)0.51694 (8)0.0205 (4)
C90.6257 (2)1.0274 (3)0.53160 (14)0.0240 (6)
C100.5157 (2)1.0403 (4)0.53093 (15)0.0313 (6)
H10A0.48830.96270.56410.038*
H10B0.49481.17600.53560.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ho0.01198 (8)0.01651 (7)0.00977 (8)−0.00044 (3)0.00010 (4)0.00131 (3)
O10.0203 (10)0.0274 (9)0.0118 (9)0.0012 (7)0.0002 (7)−0.0009 (6)
O20.0158 (9)0.0311 (8)0.0149 (8)−0.0020 (7)−0.0033 (7)−0.0017 (7)
C10.0166 (12)0.0170 (10)0.0108 (11)−0.0019 (8)0.0003 (9)0.0010 (8)
C20.0190 (12)0.0229 (11)0.0112 (11)0.0006 (9)−0.0022 (9)−0.0021 (8)
C30.0203 (13)0.0393 (14)0.0175 (13)0.0050 (10)−0.0054 (10)−0.0067 (10)
C40.0250 (14)0.0385 (14)0.0193 (13)0.0056 (11)−0.0008 (10)−0.0087 (11)
C50.0278 (13)0.0224 (11)0.0123 (12)0.0005 (9)−0.0051 (10)−0.0036 (9)
C60.0302 (14)0.0206 (11)0.0131 (12)−0.0036 (9)−0.0049 (10)−0.0017 (9)
C70.0228 (13)0.0364 (13)0.0186 (13)0.0066 (11)−0.0097 (11)−0.0037 (11)
C80.0210 (13)0.0356 (13)0.0167 (13)0.0063 (10)−0.0022 (11)−0.0065 (10)
O30.0338 (10)0.0312 (9)0.0203 (10)0.0021 (8)−0.0054 (8)−0.0088 (7)
O40.0264 (10)0.0378 (10)0.0154 (8)0.0011 (8)−0.0072 (7)0.0012 (7)
O50.0173 (9)0.0174 (8)0.0341 (11)0.0002 (6)−0.0071 (7)0.0010 (7)
O60.0189 (9)0.0188 (8)0.0238 (10)−0.0010 (6)−0.0022 (7)0.0019 (7)
C90.0197 (14)0.0212 (12)0.0310 (16)−0.0020 (9)−0.0089 (12)0.0025 (10)
C100.0376 (18)0.0236 (12)0.0326 (17)0.0037 (11)−0.0005 (14)−0.0019 (11)

Geometric parameters (Å, °)

Ho—O12.2899 (17)C4—C51.391 (3)
Ho—O2i2.2320 (17)C4—H4A0.9300
Ho—O3ii2.3208 (16)C5—C71.391 (3)
Ho—O4iii2.3013 (16)C5—C61.502 (3)
Ho—O52.4753 (16)C6—O31.259 (3)
Ho—O5iv2.4015 (18)C6—O41.260 (3)
Ho—O6v2.4633 (17)C7—C81.384 (4)
Ho—O62.5230 (16)C7—H7A0.9300
O1—C11.253 (3)C8—H8A0.9300
O2—C11.259 (3)O5—C91.263 (3)
C1—C21.500 (3)O6—C91.259 (3)
C2—C31.390 (3)C9—C101.523 (4)
C2—C81.395 (4)C10—C10vi1.514 (6)
C3—C41.382 (3)C10—H10A0.9700
C3—H3A0.9300C10—H10B0.9700
O2i—Ho—O185.34 (7)C3—C2—C8119.3 (2)
O2i—Ho—O4iii104.50 (6)C3—C2—C1120.7 (2)
O1—Ho—O4iii152.17 (6)C8—C2—C1120.0 (2)
O2i—Ho—O3ii75.73 (6)C4—C3—C2120.5 (2)
O1—Ho—O3ii134.25 (7)C4—C3—H3A119.8
O4iii—Ho—O3ii73.56 (7)C2—C3—H3A119.8
O2i—Ho—O5iv80.03 (6)C3—C4—C5120.2 (2)
O1—Ho—O5iv82.44 (6)C3—C4—H4A119.9
O4iii—Ho—O5iv73.97 (6)C5—C4—H4A119.9
O3ii—Ho—O5iv132.55 (6)C7—C5—C4119.7 (2)
O2i—Ho—O6v103.85 (6)C7—C5—C6120.4 (2)
O1—Ho—O6v74.86 (6)C4—C5—C6119.9 (2)
O4iii—Ho—O6v125.79 (6)O3—C6—O4124.2 (2)
O3ii—Ho—O6v70.08 (6)O3—C6—C5117.6 (2)
O5iv—Ho—O6v156.47 (6)O4—C6—C5118.2 (2)
O2i—Ho—O5165.74 (6)C8—C7—C5120.1 (2)
O1—Ho—O597.82 (7)C8—C7—H7A119.9
O4iii—Ho—O579.09 (6)C5—C7—H7A119.9
O3ii—Ho—O592.42 (6)C7—C8—C2120.3 (2)
O5iv—Ho—O5114.12 (5)C7—C8—H8A119.9
O6v—Ho—O564.00 (6)C2—C8—H8A119.9
O2i—Ho—O6142.50 (6)C6—O3—Hovii124.97 (15)
O1—Ho—O679.54 (6)C6—O4—Hoviii140.49 (16)
O4iii—Ho—O677.02 (6)C9—O5—Hov150.76 (16)
O3ii—Ho—O6137.25 (6)C9—O5—Ho95.09 (15)
O5iv—Ho—O664.15 (5)Hov—O5—Ho112.68 (6)
O6v—Ho—O6104.93 (5)C9—O6—Hoiv129.67 (17)
O5—Ho—O651.58 (6)C9—O6—Ho92.94 (15)
O2i—Ho—C9168.32 (6)Hoiv—O6—Ho108.99 (6)
O1—Ho—C991.01 (8)O6—C9—O5119.2 (2)
O4iii—Ho—C974.08 (8)O6—C9—C10120.5 (2)
O3ii—Ho—C9114.28 (7)O5—C9—C10120.2 (2)
O5iv—Ho—C988.50 (6)O6—C9—Ho61.15 (13)
O6v—Ho—C985.82 (6)O5—C9—Ho58.99 (13)
O5—Ho—C925.92 (6)C10—C9—Ho170.3 (2)
O6—Ho—C925.91 (6)C10vi—C10—C9105.9 (3)
C1—O1—Ho135.25 (16)C10vi—C10—H10A110.6
C1—O2—Hoi156.02 (15)C9—C10—H10A110.6
O1—C1—O2124.0 (2)C10vi—C10—H10B110.6
O1—C1—C2118.4 (2)C9—C10—H10B110.6
O2—C1—C2117.6 (2)H10A—C10—H10B108.7

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+3/2, −y+2, z+1/2; (iv) −x+3/2, y+1/2, z; (v) −x+3/2, y−1/2, z; (vi) −x+1, −y+2, −z+1; (vii) x, −y+3/2, z−1/2; (viii) −x+3/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2068).

References

  • Bruker (1998). SMART (Version 5.16), SAINT (Version 6.01) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
  • He, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m997–m998.
  • Li, Z.-F. & Wang, C.-X. (2005). Acta Cryst. E61, m2689–m2690.
  • Li, Z.-F., Wang, C.-X., Li, Y., Cai, D.-J. & Xiao, Y.-J. (2006). Acta Cryst. E62, m251–m252.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Wang, C.-X. & Li, Z.-F. (2005). Acta Cryst. E61, m2212–m2213.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography