PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m233–m234.
Published online 2007 December 21. doi:  10.1107/S1600536807067001
PMCID: PMC2915155

(Acetonitrile)[bis­(2-pyridylmeth­yl)amine]bis­(perchlorato)copper(II)

Abstract

In the title compound, [Cu(ClO4)2(C12H13N3)(C2H3N)], the CuII atom is six-coordinate in a Jahn–Teller distorted octahedral geometry, with coordination by the tridentate chelating ligand, an acetonitrile mol­ecule, and two axial perchlorate anions. The tridentate ligand bis­(2-pyridylmeth­yl)amine chelates meridionally and equatorially while an acetonitrile mol­ecule is coordinated at the fourth equatorial site. The two perchlorate anions are disordered with site occupancy factors of 0.72/0.28. The amine H is involved in intra­molecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak inter­molecular C—H(...)O inter­actions.

Related literature

For related literature, see: Belle et al. (2002 [triangle]); Gultneh et al. (1999 [triangle]); Humphreys et al. (2002 [triangle]); Palaniandavar et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m233-scheme1.jpg

Experimental

Crystal data

  • [Cu(ClO4)2(C12H13N3)(C2H3N)]
  • M r = 502.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m233-efi1.jpg
  • a = 8.3046 (16) Å
  • b = 31.453 (4) Å
  • c = 8.4978 (11) Å
  • β = 118.646 (10)°
  • V = 1948.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 293 (2) K
  • 0.45 × 0.21 × 0.07 mm

Data collection

  • Bruker P4S diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.757, T max = 0.964 (expected range = 0.709–0.904)
  • 4638 measured reflections
  • 4347 independent reflections
  • 2718 reflections with I > 2σ(I)
  • R int = 0.030
  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.193
  • S = 1.04
  • 4347 reflections
  • 320 parameters
  • 92 restraints
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: XSCANS (Bruker, 1997 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807067001/bq2058sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807067001/bq2058Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington, DC, USA, for access to their diffractometer.

supplementary crystallographic information

Comment

Bis(2-pyridylmethyl)amine (L1) has been used as a chelating ligand for several metal ions, as a single unit, or as two or more units bridged by other groups (such as m-xylyl spaces or aliphatic hydrocarbon chains) through the amine N atom (Gultneh et al., 1999; Palaniandavar et al., 1995; Belle et al., 2002; Humphreys et al., 2002). We report here the structure of the copper (II) complex of the ligand L1. The complex was synthesized by the reaction of L1 with Cu(ClO4)2.6H2O in acetonitrile.

The crystal structure shows that CuII is six-coordinate in a Jahn-Teller distorted geometry with coordination by the tridentate chelating ligand, an acetonitrile molecule, and two axial perchlorate anions (Fig. 1.). The tridentate ligand L1 is chelating meridionally and equatorially while an acetonitrile molecule is coordinated at the fourth equatorial site. One axial perchlorate group is at a CuII—OClO3- distance of 2.455 (9) Å while the other is at 2.828 (5) Å consistent with its expected Jahn-Teller elongation (O—Cu—O angle 169.1 (2)°). The mutually trans Cu—Npy distances are 1.980 (5) Å and 1.984 (5) Å and span an angle of 165.3 (2)°. The Cu—Namine bond distance is 1.991 (5) Å. The Cu—Nacetonitrile bond distance of 1.980 (5) Å is comparable to the Cu—N distances of the N atoms. The amine H is involved in intramolecular hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H···O interactions. (Table 1.).

Experimental

The title compound, bis(2-pyridylmethyl)amine copper(II) acetonitrile bis(perchlorate), was obtained by refluxing bis(2-pyridylmethyl)amine (2 mmol) and copper(II) perchlorate hexahydrate (2 mmol) in 200 ml of acetonitrile for 1 h. The product deposited on cooling the solution. Suitable crystals suited for crystallographic structure determination were obtained by slow diffusion of diethyl ether into the nitromethane solution of the complex.

Refinement

The two perchlorate anions are disordered such that O11 and O21 are unique and the remaining O atoms are disordered over two conformations with occupancy factors of 0.708 (9), 0.292 (9) and 0.73 (3), 0.27 (3), respectively. The H atoms were idealized with an N—H distance of 0.91 and C—H distances were idealized at 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3 protons).

Figures

Fig. 1.
The title compound with numbering scheme used. Ellipsoids are drawn at the 20% probability level.
Fig. 2.
The packing arrangement viewed down the c axis showing the intramolecular N—H···O and intermolecular C—H···O interactions in dashed lines.

Crystal data

[Cu(ClO4)2(C12H13N3)(C2H3N)]F000 = 1020
Mr = 502.75Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 54 reflections
a = 8.3046 (16) Åθ = 2.6–13.1º
b = 31.453 (4) ŵ = 1.45 mm1
c = 8.4978 (11) ÅT = 293 (2) K
β = 118.646 (10)ºPlate, blue
V = 1948.0 (5) Å30.45 × 0.21 × 0.07 mm
Z = 4

Data collection

Bruker P4S diffractometerRint = 0.030
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 2.6º
T = 293(2) Kh = 0→9
2θ/ω scansk = −40→0
Absorption correction: empirical (using intensity measurements) via psi scans(North et al., 1968)l = −11→9
Tmin = 0.757, Tmax = 0.9643 standard reflections
4638 measured reflections every 97 reflections
4347 independent reflections intensity decay: <2%
2718 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.193  w = 1/[σ2(Fo2) + (0.0863P)2 + 3.5739P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4347 reflectionsΔρmax = 0.49 e Å3
320 parametersΔρmin = −0.46 e Å3
92 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu0.85396 (9)0.12165 (2)−0.01007 (9)0.0455 (2)
Cl10.5466 (2)0.19134 (7)−0.4772 (2)0.0704 (5)
Cl21.07924 (18)0.04196 (5)0.29953 (18)0.0480 (4)
O110.6293 (8)0.1760 (2)−0.2975 (7)0.104 (2)
O120.5827 (15)0.1680 (3)−0.5954 (12)0.107 (4)0.708 (9)
O130.3563 (10)0.1998 (4)−0.5489 (12)0.106 (3)0.708 (9)
O140.6252 (16)0.2343 (3)−0.4642 (15)0.128 (4)0.708 (9)
O12A0.412 (3)0.1546 (6)−0.561 (3)0.123 (7)0.292 (9)
O13A0.673 (3)0.1865 (9)−0.538 (3)0.121 (8)0.292 (9)
O14A0.449 (3)0.2264 (6)−0.510 (3)0.134 (8)0.292 (9)
O211.2524 (7)0.0234 (2)0.4056 (8)0.105 (2)
O221.0940 (12)0.0848 (3)0.2525 (18)0.073 (3)0.73 (3)
O230.9968 (17)0.0176 (3)0.1363 (12)0.091 (4)0.73 (3)
O240.9656 (18)0.0399 (5)0.378 (2)0.114 (5)0.73 (3)
O22A1.083 (3)0.0726 (9)0.180 (4)0.061 (5)0.27 (3)
O23A0.945 (3)0.0114 (7)0.200 (4)0.103 (11)0.27 (3)
O24A1.031 (4)0.0626 (11)0.422 (3)0.120 (13)0.27 (3)
N0.8033 (7)0.07655 (17)−0.1923 (6)0.0535 (12)
H0A0.87220.0536−0.13260.064*
N10.8876 (7)0.16941 (18)0.1547 (7)0.0578 (13)
N1A0.6448 (6)0.09486 (15)0.0037 (6)0.0437 (10)
N1B1.0370 (7)0.14026 (16)−0.0821 (7)0.0505 (12)
C10.9117 (9)0.1962 (2)0.2536 (9)0.0592 (16)
C20.9472 (12)0.2296 (3)0.3847 (12)0.085 (2)
H210.91790.21940.47460.127*
H220.87260.25390.32590.127*
H231.07440.23750.44020.127*
C1A0.5988 (8)0.1008 (2)0.1336 (7)0.0501 (14)
H1AA0.66350.12060.22370.060*
C2A0.4574 (8)0.0783 (2)0.1363 (8)0.0568 (16)
H2AA0.43020.08200.22960.068*
C3A0.3585 (8)0.0508 (2)0.0004 (9)0.0579 (16)
H3AA0.26030.0361−0.00170.069*
C4A0.4043 (8)0.04453 (19)−0.1353 (9)0.0544 (15)
H4AA0.33830.0256−0.22850.065*
C5A0.5498 (7)0.06705 (18)−0.1285 (7)0.0440 (12)
C6A0.6090 (8)0.0636 (2)−0.2696 (8)0.0608 (17)
H6AA0.59460.0345−0.31260.073*
H6AB0.53310.0818−0.37040.073*
C1B1.1723 (8)0.1693 (2)0.0060 (9)0.0613 (17)
H1BA1.18570.18090.11230.074*
C2B1.2893 (10)0.1821 (3)−0.0557 (13)0.081 (2)
H2BA1.38170.20180.00700.097*
C3B1.2643 (11)0.1644 (3)−0.2174 (13)0.090 (3)
H3BA1.33840.1731−0.26580.108*
C4B1.1319 (11)0.1345 (3)−0.3037 (11)0.075 (2)
H4BA1.11760.1220−0.40870.090*
C5B1.0171 (9)0.1229 (2)−0.2317 (9)0.0580 (16)
C6B0.8664 (10)0.0902 (2)−0.3200 (8)0.0624 (17)
H6BA0.76470.1024−0.42590.075*
H6BB0.91200.0659−0.35690.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0421 (4)0.0597 (5)0.0456 (4)−0.0037 (3)0.0299 (3)−0.0057 (3)
Cl10.0599 (10)0.0979 (14)0.0629 (10)0.0036 (9)0.0371 (9)−0.0078 (9)
Cl20.0430 (7)0.0613 (9)0.0422 (7)−0.0001 (6)0.0225 (6)−0.0009 (6)
O110.086 (4)0.151 (6)0.072 (4)0.032 (4)0.036 (3)0.023 (4)
O120.120 (8)0.114 (8)0.098 (6)0.021 (6)0.061 (6)−0.035 (5)
O130.070 (5)0.147 (9)0.101 (6)0.021 (5)0.041 (5)0.001 (6)
O140.146 (9)0.093 (7)0.154 (9)−0.027 (6)0.079 (8)−0.022 (6)
O12A0.110 (12)0.124 (13)0.105 (11)−0.020 (11)0.026 (10)−0.011 (11)
O13A0.122 (16)0.131 (18)0.163 (16)0.012 (13)0.110 (13)0.011 (14)
O14A0.122 (13)0.092 (12)0.166 (13)0.027 (12)0.050 (13)0.006 (12)
O210.066 (3)0.113 (5)0.103 (5)0.021 (3)0.014 (3)0.016 (4)
O220.070 (4)0.064 (5)0.072 (6)−0.010 (4)0.023 (4)−0.004 (4)
O230.099 (7)0.075 (6)0.057 (5)−0.009 (5)0.003 (5)−0.010 (4)
O240.127 (9)0.137 (11)0.137 (10)0.022 (8)0.111 (9)0.025 (8)
O22A0.065 (7)0.066 (9)0.065 (9)0.014 (7)0.041 (8)0.020 (7)
O23A0.101 (19)0.106 (19)0.08 (2)−0.064 (15)0.026 (15)−0.010 (14)
O24A0.22 (4)0.11 (2)0.076 (16)−0.01 (2)0.11 (2)−0.034 (16)
N0.057 (3)0.071 (3)0.045 (3)0.001 (2)0.035 (2)−0.003 (2)
N10.056 (3)0.065 (3)0.065 (3)−0.009 (3)0.039 (3)−0.014 (3)
N1A0.040 (2)0.049 (3)0.050 (3)0.000 (2)0.028 (2)0.000 (2)
N1B0.049 (3)0.061 (3)0.054 (3)0.013 (2)0.035 (2)0.014 (2)
C10.049 (3)0.074 (5)0.060 (4)−0.004 (3)0.030 (3)−0.005 (3)
C20.094 (6)0.067 (5)0.100 (6)−0.017 (4)0.053 (5)−0.029 (4)
C1A0.042 (3)0.074 (4)0.042 (3)−0.002 (3)0.026 (3)−0.006 (3)
C2A0.043 (3)0.084 (5)0.054 (4)0.001 (3)0.032 (3)0.007 (3)
C3A0.039 (3)0.072 (4)0.066 (4)0.001 (3)0.028 (3)0.015 (3)
C4A0.038 (3)0.049 (3)0.066 (4)−0.002 (3)0.017 (3)−0.002 (3)
C5A0.036 (3)0.048 (3)0.048 (3)0.008 (2)0.020 (2)−0.002 (2)
C6A0.049 (3)0.084 (5)0.048 (3)−0.004 (3)0.023 (3)−0.016 (3)
C1B0.047 (3)0.063 (4)0.074 (4)−0.006 (3)0.030 (3)0.008 (3)
C2B0.055 (4)0.085 (5)0.118 (7)0.010 (4)0.054 (5)0.030 (5)
C3B0.076 (5)0.103 (7)0.125 (8)0.024 (5)0.075 (6)0.053 (6)
C4B0.080 (5)0.093 (6)0.083 (5)0.033 (4)0.064 (4)0.034 (4)
C5B0.055 (4)0.075 (4)0.061 (4)0.019 (3)0.040 (3)0.023 (3)
C6B0.074 (4)0.080 (5)0.051 (3)0.014 (4)0.045 (3)0.003 (3)

Geometric parameters (Å, °)

Cu—N11.980 (5)N1B—C1B1.360 (8)
Cu—N1B1.980 (5)C1—C21.455 (10)
Cu—N1A1.984 (4)C2—H210.9600
Cu—N1.991 (5)C2—H220.9600
Cu—O22A2.379 (17)C2—H230.9600
Cu—O222.455 (9)C1A—C2A1.380 (8)
Cu—O112.828 (5)C1A—H1AA0.9300
Cl1—O14A1.317 (13)C2A—C3A1.360 (9)
Cl1—O121.387 (7)C2A—H2AA0.9300
Cl1—O13A1.389 (13)C3A—C4A1.390 (9)
Cl1—O131.420 (7)C3A—H3AA0.9300
Cl1—O111.425 (5)C4A—C5A1.377 (8)
Cl1—O141.483 (8)C4A—H4AA0.9300
Cl1—O12A1.524 (14)C5A—C6A1.503 (8)
Cl2—O241.394 (7)C6A—H6AA0.9700
Cl2—O211.406 (5)C6A—H6AB0.9700
Cl2—O23A1.407 (13)C1B—C2B1.367 (9)
Cl2—O22A1.412 (12)C1B—H1BA0.9300
Cl2—O221.428 (7)C2B—C3B1.403 (12)
Cl2—O24A1.435 (12)C2B—H2BA0.9300
Cl2—O231.438 (7)C3B—C4B1.364 (12)
N—C6A1.477 (8)C3B—H3BA0.9300
N—C6B1.478 (7)C4B—C5B1.405 (8)
N—H0A0.9100C4B—H4BA0.9300
N1—C11.137 (8)C5B—C6B1.512 (10)
N1A—C5A1.341 (7)C6B—H6BA0.9700
N1A—C1A1.344 (6)C6B—H6BB0.9700
N1B—C5B1.320 (8)
N1—Cu—N1B97.2 (2)C1A—N1A—Cu126.2 (4)
N1—Cu—N1A96.40 (19)C5B—N1B—C1B119.8 (5)
N1B—Cu—N1A165.3 (2)C5B—N1B—Cu114.5 (4)
N1—Cu—N175.1 (2)C1B—N1B—Cu125.6 (4)
N1B—Cu—N83.0 (2)N1—C1—C2178.1 (8)
N1A—Cu—N83.01 (19)C1—C2—H21109.5
N1—Cu—O22A102.5 (9)C1—C2—H22109.5
N1B—Cu—O22A85.3 (4)H21—C2—H22109.5
N1A—Cu—O22A97.0 (5)C1—C2—H23109.5
N—Cu—O22A82.4 (9)H21—C2—H23109.5
N1—Cu—O2286.4 (4)H22—C2—H23109.5
N1B—Cu—O2290.6 (3)N1A—C1A—C2A121.4 (6)
N1A—Cu—O2295.6 (3)N1A—C1A—H1AA119.3
N—Cu—O2298.5 (4)C2A—C1A—H1AA119.3
O22A—Cu—O2216.4 (6)C3A—C2A—C1A119.0 (6)
N1—Cu—O1187.9 (2)C3A—C2A—H2AA120.5
N1B—Cu—O1180.84 (18)C1A—C2A—H2AA120.5
N1A—Cu—O1194.23 (19)C2A—C3A—C4A120.0 (6)
N—Cu—O1187.3 (2)C2A—C3A—H3AA120.0
O12—Cl1—O13111.7 (6)C4A—C3A—H3AA120.0
O14A—Cl1—O11116.3 (11)C5A—C4A—C3A118.4 (6)
O12—Cl1—O11115.9 (5)C5A—C4A—H4AA120.8
O13A—Cl1—O11107.6 (10)C3A—C4A—H4AA120.8
O13—Cl1—O11112.9 (5)N1A—C5A—C4A121.5 (5)
O12—Cl1—O14107.2 (6)N1A—C5A—C6A115.4 (5)
O13—Cl1—O14102.8 (6)C4A—C5A—C6A123.1 (5)
O11—Cl1—O14105.1 (5)N—C6A—C5A109.3 (5)
O14A—Cl1—O12A107.3 (12)N—C6A—H6AA109.8
O13A—Cl1—O12A104.8 (12)C5A—C6A—H6AA109.8
O24—Cl2—O21113.2 (6)N—C6A—H6AB109.8
O21—Cl2—O23A112.0 (11)C5A—C6A—H6AB109.8
O21—Cl2—O22A112.0 (9)H6AA—C6A—H6AB108.3
O23A—Cl2—O22A108.6 (10)N1B—C1B—C2B122.6 (7)
O24—Cl2—O22110.2 (6)N1B—C1B—H1BA118.7
O21—Cl2—O22111.8 (4)C2B—C1B—H1BA118.7
O21—Cl2—O24A106.0 (10)C1B—C2B—C3B117.4 (8)
O23A—Cl2—O24A109.1 (12)C1B—C2B—H2BA121.3
O22A—Cl2—O24A108.9 (11)C3B—C2B—H2BA121.3
O24—Cl2—O23108.6 (6)C4B—C3B—C2B120.2 (7)
O21—Cl2—O23105.4 (5)C4B—C3B—H3BA119.9
O22—Cl2—O23107.3 (5)C2B—C3B—H3BA119.9
Cl1—O11—Cu155.4 (4)C3B—C4B—C5B119.1 (8)
Cl2—O22—Cu124.0 (5)C3B—C4B—H4BA120.5
Cl2—O22A—Cu130.1 (12)C5B—C4B—H4BA120.5
C6A—N—C6B116.7 (5)N1B—C5B—C4B120.9 (7)
C6A—N—Cu108.7 (4)N1B—C5B—C6B116.8 (5)
C6B—N—Cu110.3 (4)C4B—C5B—C6B122.2 (7)
C6A—N—H0A106.9N—C6B—C5B109.5 (5)
C6B—N—H0A106.9N—C6B—H6BA109.8
Cu—N—H0A106.9C5B—C6B—H6BA109.8
C1—N1—Cu177.8 (6)N—C6B—H6BB109.8
C5A—N1A—C1A119.6 (5)C5B—C6B—H6BB109.8
C5A—N1A—Cu114.1 (3)H6BA—C6B—H6BB108.2
O14A—Cl1—O11—Cu−174.7 (16)O22—Cu—N1A—C5A−109.8 (5)
O12—Cl1—O11—Cu3.7 (12)O11—Cu—N1A—C5A74.8 (4)
O13A—Cl1—O11—Cu−35.7 (16)N1—Cu—N1A—C1A−19.9 (5)
O13—Cl1—O11—Cu134.3 (10)N1B—Cu—N1A—C1A−177.9 (7)
O14—Cl1—O11—Cu−114.4 (10)N—Cu—N1A—C1A165.0 (5)
O12A—Cl1—O11—Cu72.2 (14)O22A—Cu—N1A—C1A83.6 (10)
N1—Cu—O11—Cl1152.0 (10)O22—Cu—N1A—C1A67.1 (6)
N1B—Cu—O11—Cl154.3 (10)O11—Cu—N1A—C1A−108.2 (5)
N1A—Cu—O11—Cl1−111.8 (10)N1—Cu—N1B—C5B−161.1 (4)
N—Cu—O11—Cl1−29.0 (10)N1A—Cu—N1B—C5B−3.1 (10)
O22A—Cu—O11—Cl122 (3)N—Cu—N1B—C5B14.0 (4)
O22—Cu—O11—Cl193 (2)O22A—Cu—N1B—C5B96.9 (10)
O24—Cl2—O22—Cu−76.8 (8)O22—Cu—N1B—C5B112.5 (5)
O21—Cl2—O22—Cu156.4 (6)O11—Cu—N1B—C5B−74.4 (4)
O23A—Cl2—O22—Cu9.1 (16)N1—Cu—N1B—C1B17.1 (5)
O22A—Cl2—O22—Cu60 (2)N1A—Cu—N1B—C1B175.0 (7)
O24A—Cl2—O22—Cu−99.3 (11)N—Cu—N1B—C1B−167.9 (5)
O23—Cl2—O22—Cu41.3 (8)O22A—Cu—N1B—C1B−85.0 (10)
N1—Cu—O22—Cl2132.1 (10)O22—Cu—N1B—C1B−69.4 (6)
N1B—Cu—O22—Cl2−130.7 (10)O11—Cu—N1B—C1B103.7 (5)
N1A—Cu—O22—Cl236.0 (10)C5A—N1A—C1A—C2A1.2 (9)
N—Cu—O22—Cl2−47.7 (10)Cu—N1A—C1A—C2A−175.6 (4)
O22A—Cu—O22—Cl2−59.7 (17)N1A—C1A—C2A—C3A−2.6 (10)
O11—Cu—O22—Cl2−169.2 (11)C1A—C2A—C3A—C4A2.1 (10)
O24—Cl2—O22A—Cu−21 (3)C2A—C3A—C4A—C5A−0.5 (9)
O21—Cl2—O22A—Cu−171.5 (18)C1A—N1A—C5A—C4A0.5 (8)
O23A—Cl2—O22A—Cu64 (2)Cu—N1A—C5A—C4A177.7 (4)
O22—Cl2—O22A—Cu−76 (3)C1A—N1A—C5A—C6A178.4 (5)
O24A—Cl2—O22A—Cu−55 (2)Cu—N1A—C5A—C6A−4.4 (6)
O23—Cl2—O22A—Cu86 (2)C3A—C4A—C5A—N1A−0.9 (9)
N1—Cu—O22A—Cl283 (3)C3A—C4A—C5A—C6A−178.6 (6)
N1B—Cu—O22A—Cl2180 (3)C6B—N—C6A—C5A−158.4 (5)
N1A—Cu—O22A—Cl2−15 (3)Cu—N—C6A—C5A−32.9 (6)
N—Cu—O22A—Cl2−97 (3)N1A—C5A—C6A—N25.0 (8)
O22—Cu—O22A—Cl271 (2)C4A—C5A—C6A—N−157.1 (6)
O11—Cu—O22A—Cl2−148.2 (9)C5B—N1B—C1B—C2B1.1 (10)
N1B—Cu—N—C6A−150.7 (4)Cu—N1B—C1B—C2B−177.0 (5)
N1A—Cu—N—C6A25.0 (4)N1B—C1B—C2B—C3B0.6 (11)
O22A—Cu—N—C6A123.1 (6)C1B—C2B—C3B—C4B−2.2 (11)
O22—Cu—N—C6A119.7 (5)C2B—C3B—C4B—C5B2.2 (11)
O11—Cu—N—C6A−69.6 (4)C1B—N1B—C5B—C4B−1.1 (9)
N1B—Cu—N—C6B−21.5 (4)Cu—N1B—C5B—C4B177.1 (5)
N1A—Cu—N—C6B154.2 (4)C1B—N1B—C5B—C6B178.8 (6)
O22A—Cu—N—C6B−107.7 (6)Cu—N1B—C5B—C6B−3.0 (7)
O22—Cu—N—C6B−111.1 (5)C3B—C4B—C5B—N1B−0.5 (10)
O11—Cu—N—C6B59.6 (4)C3B—C4B—C5B—C6B179.6 (7)
N1—Cu—N1A—C5A163.1 (4)C6A—N—C6B—C5B149.5 (6)
N1B—Cu—N1A—C5A5.1 (10)Cu—N—C6B—C5B24.8 (6)
N—Cu—N1A—C5A−12.0 (4)N1B—C5B—C6B—N−14.8 (8)
O22A—Cu—N1A—C5A−93.4 (9)C4B—C5B—C6B—N165.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0A···O22A0.912.452.89 (3)110
N—H0A···O230.912.303.084 (12)144
N—H0A···O23i0.912.503.317 (10)150
C2—H21···O13Aii0.962.232.98 (2)133
C2—H22···O14iii0.962.363.103 (14)134
C1A—H1AA···O12ii0.932.463.176 (9)134
C3A—H3AA···O23iv0.932.533.376 (15)152
C3A—H3AA···O23Aiv0.932.292.993 (14)133
C6A—H6AA···O21i0.972.563.381 (9)143
C2B—H2BA···O14Av0.932.353.112 (16)140
C3B—H3BA···O11vi0.932.563.429 (10)156
C4B—H4BA···O24Avii0.932.253.06 (3)145
C6B—H6BA···O120.972.563.425 (13)149
C6B—H6BB···O24Avii0.972.513.211 (16)129

Symmetry codes: (i) −x+2, −y, −z; (ii) x, y, z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y, −z; (v) x+1, −y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2058).

References

  • Belle, C., Beguin, C., Gautier-Luneau, I., Hamman, S., Philouze, C., Pierre, J. L., Thomas, F. & Storelli, S. (2002). Inorg. Chem.41, 479–491. [PubMed]
  • Bruker (1997). XSCANS Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gultneh, Y., Khan, A. R., Blaize, D., Chaudhry, S., Ahvazi, B., Marvey, B. B. & Butcher, R. J. (1999). J. Inorg. Biochem.75, 7–18.
  • Humphreys, K. J., Karlin, K. D. & Rokita, S. E. (2002). J. Am. Chem. Soc.124, 8055–8066. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Palaniandavar, M., Pandiyan, T., Lakshiminarayanan, M. & Manohar, H. J. (1995). J. Chem. Soc. Dalton Trans. pp. 455–461.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography