PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m232.
Published online 2007 December 21. doi:  10.1107/S1600536807066871
PMCID: PMC2915154

Di-μ-iodido-bis­[(diethyl ether-κO)(η5-1,3-di-tert-butyl­cyclo­penta­dien­yl)ytterbium(II)]

Abstract

The half-sandwich title compound, [Yb2(C13H21)2I2(C4H10O)2], crystallizes as a centrosymmetric dimer. The Yb atom is coordinated in a three-legged piano-stool geometry by a cyclo­penta­dienyl ring, two I anions and the O atom of a diethyl ether mol­ecule. The central Yb2I2 core is an approximate square.

Related literature

For related structures, see: Constantine et al. (1996 [triangle]); Trifonov et al. (2003 [triangle]). For related chemistry, see: Schultz et al. (2000 [triangle]); Schumann et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m232-scheme1.jpg

Experimental

Crystal data

  • [Yb2(C13H21)2I2(C4H10O)2]
  • M r = 1102.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m232-efi1.jpg
  • a = 13.7190 (3) Å
  • b = 11.1690 (1) Å
  • c = 14.4440 (3) Å
  • β = 112.800 (1)°
  • V = 2040.28 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.10 mm−1
  • T = 160 K
  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (XPREP; Sheldrick, 1995 [triangle]) T min = 0.192, T max = 0.401
  • 8321 measured reflections
  • 2928 independent reflections
  • 2679 reflections with I > 2σ(I)
  • R int = 0.033
  • θmax = 23.3°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.059
  • S = 1.09
  • 2928 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.92 e Å−3
  • Δρmin = −1.11 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066871/tk2232sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066871/tk2232Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under contract No. DE-AC03-76SF00098. The author thanks Dr Frederick J. Hollander (at CHEXRAY, the University of California at Berkeley X-ray diffraction facility) for assistance with the crystallography, and Professor Richard A. Andersen.

supplementary crystallographic information

Comment

The title compound (I) was formed in an attempt to prepare the metallocene of the substituted cyclopentadienyl ligand by stirring one equivalent of the magnesocene (η5-1,3-(Me3C)2C5H3)2Mg with YbI2 in diethyl ether. The reaction can also be performed using half an equivalent of magnesocene. The inital yellow-green slurry forms a deep green solution after stirring for two hours at room temperature. The green color has previously been associated with formation of an ytterbocene. However, upon filtration a thermochroic solution results that is bright-green below -30°C but becomes orange-brown upon warming to room temperature. The bright-orange crystals that form at low temperature do not redissolve in diethyl ether and are insoluble in hydrocarbon solvents. Use of THF as solvent for the reaction leads to transfer of two cyclopentadienide rings to the metal and formation of the known THF adduct [1,3-(Me3C)2C5H3]2Yb(THF) (Schumann et al., 1993).

The structure of (I) is centrosymmetric about a square Yb2I2 core, Fig. 1 & Table 1. There is gross thermal motion in one ethyl group of the diethyl ether ligand, affecting the thermal parameters of C(14) in particular, but this does not adversely impact the quality of the core of the structure. The distances and angles fall within normal ranges for Yb(II) in 6-coordination. (Schultz et al., 2000)

The structure is similar to those of the published dimers {(Me5C5)Yb(THF)2-µ-I}2, {(Me5C5)Yb(dme)-µ-I}2, (Constantine et al., 1996) and {[Me4[SiMe2NH(CMe3)]C5]Yb(THF)2-µ-I}2 (Trifonov et al., 2003), in which the Yb(II) is 7-coordinate.

Experimental

The magnesocene [1,3-(Me3C)2C5H3]2Mg (0.5 g, 1.3 mmol) was weighed into a round-bottomed flask equipped with a magnetic stirrer bar. YbI2 (0.56 g, 1.3 mmol) was added under a flow of N2. Et2O was added and the slurry was stirred at room temperature. After 1 h, the solution was green in color. After 3 h, the solution was filtered off the grey solid which appeared to contain unreacted magnesocene by 1H NMR spectroscopy. The volume of the green solution was reduced under reduced pressure; the solid that was deposited on the sides of the flask during this procedure was orange. Cooling to -40°C resulted in the formation of clear orange crystals which were insoluble in OEt2, hot toluene or C6D6. The crystals turn brown at 130°C, and black at 230°C, but do not melt to 330°C. Analysis. Found: C 38.2, H 5.96%. C17H31IOYb requires C 37.0, H 5.67%. The insolubility of the dimer prevented recrystallization or the obtention of an NMR spectrum. Sublimation of the dimer did not lead to the formation of the ytterbocene. The ether adduct of magnesium iodide can be obtained as a first crop of colorless crystals from the mother liquor before crystallization of the orange product, and unreacted [1,3-(Me3C)2C5H3]2Mg can be crystallized from the mother liquor after all of the product has crystallized from the solution.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl-H atoms and Uiso(H) = 1.2 Ueq(C) for other atoms. The maximum and minimum residual electron density peaks of 0.92 and -1.11 e Å-3 were located 0.94 and 0.94 Å, respectively from the H15A and Yb atoms.

Figures

Fig. 1.
A view of the dimer (I) showing the atom labelling scheme. Hydrogen atoms have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level. Symmetry operation i: -x + 2, -y + 1, -z + 1.

Crystal data

[Yb2(C13H21)2I2(C4H10O)2]F000 = 1056
Mr = 1102.72Dx = 1.795 Mg m3
Monoclinic, P21/nMelting point: 330 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 13.7190 (3) ÅCell parameters from 6017 reflections
b = 11.1690 (1) Åθ = 2.0–23.3º
c = 14.4440 (3) ŵ = 6.10 mm1
β = 112.800 (1)ºT = 160 K
V = 2040.28 (6) Å3Plate-like, orange
Z = 20.40 × 0.30 × 0.15 mm

Data collection

Bruker SMART 1K CCD diffractometer2928 independent reflections
Radiation source: fine-focus sealed tube2679 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 161(2) Kθmax = 23.3º
ω scansθmin = 1.7º
Absorption correction: multi-scan(XPREP; Sheldrick, 1995)h = −15→15
Tmin = 0.192, Tmax = 0.401k = −12→7
8321 measured reflectionsl = −15→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.059  w = 1/[σ2(Fo2) + (0.0144P)2 + 9.3362P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2928 reflectionsΔρmax = 0.92 e Å3
181 parametersΔρmin = −1.11 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Yb10.848794 (19)0.48479 (2)0.519907 (18)0.02631 (9)
I10.92348 (3)0.43514 (4)0.34774 (3)0.03074 (12)
O10.7760 (4)0.6781 (4)0.4630 (3)0.0524 (13)
C10.6879 (4)0.3797 (5)0.5476 (4)0.0257 (13)
H10.62040.40750.50900.031*
C20.7543 (4)0.4259 (5)0.6424 (4)0.0262 (13)
C30.8486 (4)0.3596 (5)0.6738 (4)0.0231 (12)
H30.90670.37070.73360.028*
C40.8410 (4)0.2731 (5)0.5998 (4)0.0238 (12)
H40.89310.21830.60270.029*
C50.7402 (4)0.2844 (5)0.5203 (4)0.0240 (12)
C60.6922 (5)0.2019 (5)0.4301 (4)0.0310 (14)
C70.6089 (5)0.1221 (6)0.4471 (5)0.0444 (17)
H7A0.55480.17150.45380.067*
H7B0.64210.07580.50720.067*
H7C0.57790.06920.39090.067*
C80.7764 (5)0.1225 (6)0.4175 (5)0.0416 (16)
H8A0.74370.06810.36270.062*
H8B0.81190.07800.47810.062*
H8C0.82670.17140.40370.062*
C90.6382 (5)0.2726 (6)0.3338 (4)0.0351 (15)
H9A0.68950.32100.32110.053*
H9B0.58480.32320.34060.053*
H9C0.60610.21830.27880.053*
C100.7263 (5)0.5216 (5)0.7035 (4)0.0314 (14)
C110.6980 (7)0.4584 (7)0.7850 (6)0.058 (2)
H11A0.68630.51740.82800.088*
H11B0.75510.40690.82420.088*
H11C0.63500.41170.75360.088*
C120.8200 (5)0.6051 (6)0.7574 (5)0.0460 (17)
H12A0.84000.64530.70870.069*
H12B0.87870.55890.80150.069*
H12C0.80010.66310.79580.069*
C130.6325 (6)0.5959 (8)0.6373 (6)0.063 (2)
H13A0.64930.63450.58600.095*
H13B0.61660.65530.67740.095*
H13C0.57220.54470.60670.095*
C140.6291 (11)0.6154 (14)0.3336 (11)0.168 (8)
H14A0.57070.64180.27490.251*
H14B0.60300.57900.37970.251*
H14C0.67010.55800.31450.251*
C150.6885 (9)0.7070 (13)0.3767 (9)0.117 (4)
H15A0.64590.76530.39390.140*
H15B0.71290.74430.32890.140*
C160.8367 (7)0.7862 (7)0.5083 (6)0.061 (2)
H16A0.88180.76930.57760.073*
H16B0.78800.84910.50830.073*
C170.9034 (7)0.8298 (8)0.4551 (7)0.075 (3)
H17A0.94090.90030.48790.112*
H17B0.85920.84850.38680.112*
H17C0.95300.76870.45620.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Yb10.02713 (15)0.02691 (15)0.02587 (15)−0.00026 (11)0.01133 (11)0.00181 (11)
I10.0296 (2)0.0388 (2)0.0227 (2)−0.00659 (17)0.00885 (16)−0.00354 (17)
O10.058 (3)0.056 (3)0.045 (3)0.023 (3)0.021 (2)0.022 (3)
C10.019 (3)0.033 (3)0.021 (3)0.002 (3)0.004 (2)0.002 (3)
C20.029 (3)0.025 (3)0.025 (3)0.000 (3)0.011 (3)0.001 (3)
C30.025 (3)0.025 (3)0.017 (3)−0.002 (2)0.006 (2)0.003 (2)
C40.023 (3)0.024 (3)0.024 (3)0.000 (2)0.009 (2)0.002 (2)
C50.024 (3)0.025 (3)0.025 (3)−0.002 (2)0.011 (2)−0.001 (2)
C60.035 (3)0.028 (3)0.025 (3)−0.008 (3)0.006 (3)−0.005 (3)
C70.051 (4)0.047 (4)0.031 (3)−0.021 (3)0.010 (3)−0.004 (3)
C80.047 (4)0.034 (4)0.039 (4)0.000 (3)0.012 (3)−0.014 (3)
C90.036 (3)0.042 (4)0.024 (3)−0.009 (3)0.007 (3)−0.005 (3)
C100.034 (3)0.034 (3)0.031 (3)0.006 (3)0.018 (3)0.000 (3)
C110.090 (6)0.046 (4)0.067 (5)−0.012 (4)0.060 (5)−0.010 (4)
C120.049 (4)0.044 (4)0.049 (4)−0.013 (4)0.023 (3)−0.016 (3)
C130.057 (5)0.071 (6)0.056 (5)0.035 (4)0.015 (4)−0.013 (4)
C140.122 (11)0.171 (15)0.141 (12)−0.067 (11)−0.024 (9)0.081 (12)
C150.087 (8)0.138 (12)0.091 (8)0.016 (8)−0.004 (7)0.041 (8)
C160.090 (6)0.036 (4)0.072 (5)0.020 (4)0.047 (5)0.009 (4)
C170.087 (6)0.065 (6)0.096 (7)0.017 (5)0.060 (6)0.014 (5)

Geometric parameters (Å, °)

Yb1—Cp2.37C8—H8B0.9600
Yb1—O12.387 (5)C8—H8C0.9600
Yb1—C32.627 (5)C9—H9A0.9600
Yb1—C22.650 (5)C9—H9B0.9600
Yb1—C42.651 (5)C9—H9C0.9600
Yb1—C12.663 (5)C10—C131.519 (9)
Yb1—C52.690 (5)C10—C121.533 (9)
Yb1—I13.0848 (4)C10—C111.547 (9)
Yb1—I1i3.0961 (5)C11—H11A0.9600
I1—Yb1i3.0961 (5)C11—H11B0.9600
O1—C151.393 (10)C11—H11C0.9600
O1—C161.469 (9)C12—H12A0.9600
C1—C21.416 (8)C12—H12B0.9600
C1—C51.422 (8)C12—H12C0.9600
C1—H10.9300C13—H13A0.9600
C2—C31.405 (8)C13—H13B0.9600
C2—C101.526 (8)C13—H13C0.9600
C3—C41.413 (7)C14—C151.306 (16)
C3—H30.9300C14—H14A0.9600
C4—C51.419 (7)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.522 (8)C15—H15A0.9700
C6—C91.519 (8)C15—H15B0.9700
C6—C81.521 (8)C16—C171.486 (10)
C6—C71.543 (8)C16—H16A0.9700
C7—H7A0.9600C16—H16B0.9700
C7—H7B0.9600C17—H17A0.9600
C7—H7C0.9600C17—H17B0.9600
C8—H8A0.9600C17—H17C0.9600
I1—Yb1—Cp127C8—C6—C7109.0 (5)
O1—Yb1—Cp124C5—C6—C7108.3 (5)
I1—Yb1—Cpi115C6—C7—H7A109.5
O1—Yb1—C3129.45 (16)C6—C7—H7B109.5
O1—Yb1—C2101.92 (16)H7A—C7—H7B109.5
C3—Yb1—C230.87 (17)C6—C7—H7C109.5
O1—Yb1—C4150.96 (16)H7A—C7—H7C109.5
C3—Yb1—C431.06 (16)H7B—C7—H7C109.5
C2—Yb1—C451.34 (17)C6—C8—H8A109.5
O1—Yb1—C1100.94 (17)C6—C8—H8B109.5
C3—Yb1—C150.62 (17)H8A—C8—H8B109.5
C2—Yb1—C130.92 (17)C6—C8—H8C109.5
C4—Yb1—C150.65 (17)H8A—C8—H8C109.5
O1—Yb1—C5126.52 (17)H8B—C8—H8C109.5
C3—Yb1—C551.15 (17)C6—C9—H9A109.5
C2—Yb1—C551.49 (17)C6—C9—H9B109.5
C4—Yb1—C530.81 (16)H9A—C9—H9B109.5
C1—Yb1—C530.80 (16)C6—C9—H9C109.5
O1—Yb1—I196.34 (11)H9A—C9—H9C109.5
C3—Yb1—I1134.10 (12)H9B—C9—H9C109.5
C2—Yb1—I1153.51 (12)C13—C10—C2111.1 (5)
C4—Yb1—I1105.83 (12)C13—C10—C12109.1 (6)
C1—Yb1—I1126.53 (12)C2—C10—C12111.7 (5)
C5—Yb1—I1102.10 (11)C13—C10—C11109.1 (6)
O1—Yb1—I1i97.98 (13)C2—C10—C11108.3 (5)
C3—Yb1—I1i87.89 (12)C12—C10—C11107.4 (5)
C2—Yb1—I1i107.27 (12)C10—C11—H11A109.5
C4—Yb1—I1i100.96 (11)C10—C11—H11B109.5
C1—Yb1—I1i136.99 (11)H11A—C11—H11B109.5
C5—Yb1—I1i131.77 (12)C10—C11—H11C109.5
I1—Yb1—I1i88.782 (12)H11A—C11—H11C109.5
Yb1—I1—Yb1i91.218 (11)H11B—C11—H11C109.5
C15—O1—C16110.6 (8)C10—C12—H12A109.5
C15—O1—Yb1128.2 (7)C10—C12—H12B109.5
C16—O1—Yb1120.1 (4)H12A—C12—H12B109.5
C2—C1—C5109.7 (5)C10—C12—H12C109.5
C2—C1—Yb174.0 (3)H12A—C12—H12C109.5
C5—C1—Yb175.6 (3)H12B—C12—H12C109.5
C2—C1—H1125.2C10—C13—H13A109.5
C5—C1—H1125.2C10—C13—H13B109.5
Yb1—C1—H1117.0H13A—C13—H13B109.5
C3—C2—C1106.6 (5)C10—C13—H13C109.5
C3—C2—C10126.1 (5)H13A—C13—H13C109.5
C1—C2—C10127.1 (5)H13B—C13—H13C109.5
C3—C2—Yb173.7 (3)C15—C14—H14A109.5
C1—C2—Yb175.1 (3)C15—C14—H14B109.5
C10—C2—Yb1120.7 (4)H14A—C14—H14B109.5
C2—C3—C4109.1 (5)C15—C14—H14C109.5
C2—C3—Yb175.5 (3)H14A—C14—H14C109.5
C4—C3—Yb175.4 (3)H14B—C14—H14C109.5
C2—C3—H3125.4C14—C15—O1114.0 (11)
C4—C3—H3125.4C14—C15—H15A108.7
Yb1—C3—H3115.7O1—C15—H15A108.7
C3—C4—C5108.3 (5)C14—C15—H15B108.7
C3—C4—Yb173.5 (3)O1—C15—H15B108.7
C5—C4—Yb176.1 (3)H15A—C15—H15B107.6
C3—C4—H4125.8O1—C16—C17113.3 (6)
C5—C4—H4125.8O1—C16—H16A108.9
Yb1—C4—H4116.6C17—C16—H16A108.9
C4—C5—C1106.3 (5)O1—C16—H16B108.9
C4—C5—C6127.0 (5)C17—C16—H16B108.9
C1—C5—C6126.4 (5)H16A—C16—H16B107.7
C4—C5—Yb173.1 (3)C16—C17—H17A109.5
C1—C5—Yb173.6 (3)C16—C17—H17B109.5
C6—C5—Yb1123.9 (3)H17A—C17—H17B109.5
C9—C6—C8108.5 (5)C16—C17—H17C109.5
C9—C6—C5111.4 (5)H17A—C17—H17C109.5
C8—C6—C5111.0 (5)H17B—C17—H17C109.5
C9—C6—C7108.5 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2232).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Constantine, S. P., De Lima, G. M., Hitchcock, P. B., Keates, J. M. & Lawless, G. A. (1996). Chem. Commun. pp. 2421–2422.
  • Schultz, M., Burns, C. J., Schwartz, D. J. & Andersen, R. A. (2000). Organometallics, 19, 781–789.
  • Schumann, H., Winterfeld, J., Hemling, H. & Kuhn, N. (1993). Chem. Ber.126, 2657–2659.
  • Sheldrick, G. M. (1995). XPREP Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Sheldrick, G. M. (1998). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Trifonov, A. T., Spaniol, T. P. & Okuda, J. (2003). Eur. J. Inorg. Chem. pp. 926–935.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography