PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m228–m229.
Published online 2007 December 21. doi:  10.1107/S1600536807066585
PMCID: PMC2915152

Bis(2,2′-biimidazole-κ2 N,N′)bis­(2-bromo­fumarato-κO)copper(II)

Abstract

In the title compound, [Cu(C4H2BrO4)2(C6H6N4)2], the central CuII atom lies on an inversion center and is six-coordinated in an octahedral geometry by four N atoms from two chelating biimidazole mol­ecules in the equatorial plane and two O atoms from two 2-bromo­fumarate ligands in the axial positions. O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds lead to a three-dimensional network.

Related literature

For related literature, see: Atencio et al. (2005 [triangle]); Carraza et al. (2003 [triangle]); Öhrström et al. (2001 [triangle]); Sang & Xu (2006 [triangle]); Tadokoro et al. (1999 [triangle]). For the synthesis and crystal structure of 2-bromo­fumaric acid, see: Fischer (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m228-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H2BrO4)2(C6H6N4)2]
  • M r = 719.77
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m228-efi1.jpg
  • a = 7.1650 (14) Å
  • b = 8.6458 (17) Å
  • c = 9.841 (2) Å
  • α = 83.13 (1)°
  • β = 84.21 (3)°
  • γ = 87.56 (2)°
  • V = 601.9 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 4.29 mm−1
  • T = 295 (2) K
  • 0.12 × 0.1 × 0.09 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.601, T max = 0.685
  • 5942 measured reflections
  • 2717 independent reflections
  • 1655 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.196
  • S = 1.06
  • 2717 reflections
  • 172 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.01 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066585/hy2105sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066585/hy2105Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the Scientific Research Foundation of the State Education Ministry for Returned Overseas Chinese Scholars (grant No. 2006331), the Educational Committee of Zhejiang Province (grant No. 20061696), the Starting Foundation of Zhejiang Province for Returned Overseas Chinese Scholars (grant No. 2005545), the Natural Science Foundation of Ningbo City (grant No. 2007A610021) and Ningbo University (grant No. 2005062). We thank Dr K.-W. Lei for structural discussions and Mrs W. Xu and D.-Y. Cheng for collecting the diffraction data.

supplementary crystallographic information

Comment

Because of its various deprotonation modes (H2biim, Hbiim-, biim2-), the 2,2'-biimidazole ligand exhibits rich coordination patterns with various metals such as AgI (Sang & Xu, 2006), NiII (Tadokoro et al., 1999), CuII(Atencio et al., 2005; Carraza et al., 2003) and CoIIIÖhrström et al., 2001). We report here the crystal structure of a CuII complex with neutral 2,2'-biimidazole molecule and 2-bromofumarate anion as ligands.

As illustrated in Fig. 1, the Cu atom shows a distorted octahedral coordination geometry, formed by four N atoms from two 2,2'-biimidazole molecules and two O atoms from carboxylate groups offered by two 2-bromofumarate ligands at the axial positions. The asymmetric unit contains an H2biim molecule and a 2-bromofumarate anion with a CuII atom lying on an inversion center. We can see that the lengths of Cu—N bonds [2.028 (5) and 2.001 (5) Å] are slightly asymmetric (Table 1). This behavior is similar to the reported Cu complex with H2biim [2.036 (2) and 2.010 (2) Å] (Atencio et al., 2005). Three types of strong hydrogen bonds are observed. The O—H···O hydrogen bonds are formed between two adjacent uncoordinated carboxylate groups. The N—H···O hydrogen bonds are formed between H2biim and the neighboring coordinated carboxylate group. Weak C—H···O hydrogen bonds also exist in the structure (Table 2). The complex molecules are assembled into two-dimensional layers via O—H···O and N—H···O hydrogen bonds. These layers are further assembled through C—H···O hydrogen bonds into a three-dimensional supramolecular structure.

Experimental

In a 50 ml two-neck bottle, the mixture of 2,2'-biimidazole (1.340 g, 10 mmol), 2-bromofumaric acid (0.195 g, 10 mmol) (Fischer, 2006), water (10 ml) and methanol (10 ml) was heated to 353 K, and then copper(II) chloride dihydrate (0.170 g, 10 mmol) was added. The suspension was stirred and kept at 353 K for 3 h. After cooling to room temperature, the solid was filtered off and the green solution was allowed to evaporate in air. After one day, block green crystals suitable for X-ray diffraction were formed.

Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C,N). H atom attached to O atom was located in a difference Fourier map and fixed with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 45% probability level. [Symmetry code: (i) -x, -y, 2 - z.]

Crystal data

[Cu(C4H2BrO4)2(C6H6N4)2]Z = 1
Mr = 719.77F000 = 355
Triclinic, P1Dx = 1.986 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.1650 (14) ÅCell parameters from 2750 reflections
b = 8.6458 (17) Åθ = 3.0–27.5º
c = 9.841 (2) ŵ = 4.29 mm1
α = 83.13 (1)ºT = 295 (2) K
β = 84.21 (3)ºPlatelet, green
γ = 87.56 (2)º0.12 × 0.1 × 0.09 mm
V = 601.9 (2) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer2717 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.072
T = 295(2) Kθmax = 27.5º
ω scansθmin = 3.4º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −9→9
Tmin = 0.601, Tmax = 0.685k = −11→11
5942 measured reflectionsl = −10→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.196  w = 1/[σ2(Fo2) + (0.0963P)2 + 0.1925P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2717 reflectionsΔρmax = 1.01 e Å3
172 parametersΔρmin = −0.73 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.00000.00001.00000.0331 (3)
Br−0.08553 (12)0.49244 (10)0.83673 (9)0.0604 (4)
N10.3926 (8)−0.0593 (7)1.2738 (6)0.0444 (14)
H10.4976−0.10491.29150.053*
C10.2838 (12)0.0336 (10)1.3537 (8)0.053 (2)
H20.31080.06281.43690.064*
O1−0.3636 (9)0.4989 (7)0.6254 (6)0.0682 (18)
N20.1405 (7)0.0166 (6)1.1664 (6)0.0344 (12)
C20.1300 (11)0.0765 (10)1.2905 (8)0.0497 (19)
H30.03020.13821.32460.060*
O2−0.3039 (8)0.3652 (7)0.4506 (6)0.0654 (17)
H8−0.40870.41020.43430.098*
N30.4932 (8)−0.2414 (7)1.0080 (7)0.0445 (15)
H40.5900−0.26261.05220.053*
C30.3013 (9)−0.0657 (7)1.1606 (7)0.0344 (14)
O30.2811 (8)0.2094 (7)0.6488 (6)0.0643 (16)
N40.2205 (7)−0.1400 (6)0.9522 (6)0.0334 (12)
C40.3456 (8)−0.1495 (7)1.0427 (7)0.0336 (14)
O40.1940 (7)0.2317 (7)0.8670 (6)0.0568 (12)
C50.4601 (10)−0.2935 (9)0.8885 (8)0.0493 (19)
H50.5373−0.36100.83990.059*
C60.2919 (10)−0.2312 (9)0.8536 (8)0.0441 (18)
H60.2352−0.24670.77550.053*
C7−0.2662 (11)0.4104 (9)0.5622 (8)0.0477 (18)
C8−0.0839 (11)0.3384 (9)0.6025 (8)0.0514 (19)
H7−0.02300.27410.54160.062*
C90.0024 (10)0.3520 (8)0.7107 (8)0.0459 (17)
C100.1763 (10)0.2592 (10)0.7433 (10)0.0568 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0202 (6)0.0442 (6)0.0367 (6)0.0114 (4)−0.0126 (5)−0.0077 (5)
Br0.0523 (6)0.0680 (6)0.0663 (6)0.0119 (4)−0.0203 (5)−0.0224 (5)
N10.032 (3)0.058 (4)0.046 (3)0.006 (3)−0.017 (3)−0.005 (3)
C10.042 (5)0.077 (5)0.044 (4)0.005 (4)−0.021 (4)−0.011 (4)
O10.058 (4)0.093 (4)0.060 (4)0.020 (3)−0.040 (3)−0.015 (3)
N20.021 (3)0.043 (3)0.040 (3)0.008 (2)−0.006 (2)−0.008 (3)
C20.045 (5)0.067 (5)0.042 (4)0.002 (4)−0.004 (4)−0.025 (4)
O20.050 (4)0.084 (4)0.066 (4)0.028 (3)−0.018 (3)−0.023 (3)
N30.023 (3)0.051 (3)0.059 (4)0.010 (3)−0.010 (3)−0.003 (3)
C30.017 (3)0.046 (3)0.040 (4)−0.001 (3)−0.008 (3)0.004 (3)
O30.044 (3)0.082 (4)0.068 (4)0.020 (3)−0.020 (3)−0.007 (3)
N40.017 (3)0.041 (3)0.042 (3)0.008 (2)−0.007 (2)−0.005 (2)
C40.017 (3)0.040 (3)0.045 (4)0.002 (2)−0.006 (3)−0.003 (3)
O40.032 (2)0.070 (3)0.068 (3)0.007 (2)−0.022 (2)0.004 (3)
C50.032 (4)0.058 (4)0.060 (5)0.015 (3)−0.006 (4)−0.023 (4)
C60.030 (4)0.056 (4)0.048 (4)0.013 (3)−0.009 (3)−0.013 (4)
C70.033 (4)0.055 (4)0.052 (5)0.006 (3)−0.009 (4)0.008 (4)
C80.043 (5)0.061 (5)0.051 (5)0.002 (4)−0.011 (4)−0.005 (4)
C90.036 (4)0.049 (4)0.053 (4)−0.002 (3)−0.010 (4)0.000 (4)
C100.032 (2)0.070 (3)0.068 (3)0.007 (2)−0.022 (2)0.004 (3)

Geometric parameters (Å, °)

Cu—N42.001 (5)O2—H80.8512
Cu—N4i2.001 (5)N3—C41.337 (8)
Cu—N22.028 (5)N3—C51.354 (9)
Cu—N2i2.028 (5)N3—H40.8600
Cu—O42.627 (6)C3—C41.441 (9)
Cu—O4i2.627 (6)O3—C101.242 (10)
Br—C91.883 (7)N4—C41.319 (8)
N1—C31.355 (8)N4—C61.369 (8)
N1—C11.358 (10)O4—C101.230 (10)
N1—H10.8600C5—C61.358 (10)
C1—C21.337 (11)C5—H50.9300
C1—H20.9300C6—H60.9300
O1—C71.200 (9)C7—C81.492 (10)
N2—C31.329 (7)C8—C91.304 (10)
N2—C21.377 (8)C8—H70.9300
C2—H30.9300C9—C101.494 (7)
O2—C71.266 (9)
N4—Cu—N4i180.000 (1)C5—N3—H4126.8
N4—Cu—N281.9 (2)N2—C3—N1111.6 (6)
N4i—Cu—N298.1 (2)N2—C3—C4117.0 (6)
N4—Cu—N2i98.1 (2)N1—C3—C4131.3 (6)
N4i—Cu—N2i81.9 (2)C4—N4—C6105.7 (5)
N2—Cu—N2i180.000 (1)C4—N4—Cu112.8 (4)
N4—Cu—O487.3 (2)C6—N4—Cu141.5 (5)
N4i—Cu—O492.7 (2)N4—C4—N3111.9 (6)
N2—Cu—O488.9 (2)N4—C4—C3116.9 (5)
N2i—Cu—O491.1 (2)N3—C4—C3131.2 (6)
N4—Cu—O4i92.7 (2)C10—O4—Cu115.9 (5)
N4i—Cu—O4i87.3 (2)N3—C5—C6107.7 (6)
N2—Cu—O4i91.1 (2)N3—C5—H5126.2
N2i—Cu—O4i88.9 (2)C6—C5—H5126.1
O4—Cu—O4i180.00 (17)C5—C6—N4108.3 (6)
C3—N1—C1106.0 (6)C5—C6—H6126.0
C3—N1—H1127.0N4—C6—H6125.7
C1—N1—H1127.0O1—C7—O2124.4 (7)
C2—C1—N1107.8 (6)O1—C7—C8125.4 (7)
C2—C1—H2125.7O2—C7—C8110.2 (7)
N1—C1—H2126.5C9—C8—C7129.5 (8)
C3—N2—C2104.6 (6)C9—C8—H7115.2
C3—N2—Cu111.4 (4)C7—C8—H7115.3
C2—N2—Cu143.8 (5)C8—C9—C10122.9 (7)
C1—C2—N2109.9 (6)C8—C9—Br121.5 (6)
C1—C2—H3125.5C10—C9—Br115.5 (6)
N2—C2—H3124.6O4—C10—O3126.1 (7)
C7—O2—H8105.0O4—C10—C9114.2 (8)
C4—N3—C5106.3 (6)O3—C10—C9119.5 (8)
C4—N3—H4126.9

Symmetry codes: (i) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3ii0.861.902.756 (8)174
N3—H4···O4ii0.861.852.672 (8)159
O2—H8···O1iii0.851.902.743 (9)172
C1—H2···O3iv0.932.553.433 (10)159
C5—H5···O1v0.932.583.432 (10)153
C6—H6···O2vi0.932.563.329 (10)141

Symmetry codes: (ii) −x+1, −y, −z+2; (iii) −x−1, −y+1, −z+1; (iv) x, y, z+1; (v) x+1, y−1, z; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2105).

References

  • Atencio, R., Ramírez, K., Reyes, J. A., González, T. & Silva, P. (2005). Inorg. Chim. Acta, 358, 520–526.
  • Carraza, J., Brennan, C., Sletten, J., Vangdal, B., Rillema, P., Lloret, F. & Julve, M. (2003). New J. Chem.27, 1775–1783.
  • Fischer, A. (2006). Acta Cryst. E62, o4190–o4191.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Öhrström, L., Larsson, K., Borg, S. & Norberg, S. T. (2001). Chem. Eur. J.7, 4805–4810. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sang, R. L. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1260–1267.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tadokoro, M., Isobe, K., Uekusa, H., Ohashi, Y., Toyoda, J. & Nakasuji, K. (1999). Angew. Chem. Int. Ed.38, 95–98.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography