PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m227.
Published online 2007 December 21. doi:  10.1107/S1600536807066755
PMCID: PMC2915151

catena-Poly[cobalt(II)-bis­(μ-3,7-dichloro­quinoline-8-carboxyl­ato-κ3 N,O:O′)]

Abstract

In the crystal structure of the title compound, [Co(C10H4Cl2NO2)2]n, the CoII cation lies on a twofold rotation axis. Each cation is N,O-chelated by the carboxyl­ate anions of two 3,7-dichloro­quinoline-8-carboxyl­ate ligands. The second carboxyl­ate O atom of each ligand coordinates to the CoII cation of an adjacent mol­ecule, linking the cations into a linear chain. Strong inter­chain π–π stacking inter­actions are observed in the crystal structure (perpendicular distance 3.42 Å, centroid-to-centroid distance 3.874 Å)

Related literature

For the use of 3,7-dichloro-8-quinoline­carboxylic acid as a herbicide, see: Nuria et al. (1997 [triangle]); Pornprom et al. (2006 [triangle]); Sunohara & Matsumoto (2004 [triangle]); Tresch & Grossmann (2002 [triangle]). For related vanadium and cadmium complexes, see Chen et al. (2001 [triangle]); Yang et al. (2005 [triangle]). For related literature, see: Turel et al. (2004 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m227-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H4Cl2NO2)2]
  • M r = 541.01
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m227-efi2.jpg
  • a = 13.5109 (14) Å
  • b = 15.964 (2) Å
  • c = 9.2157 (16) Å
  • V = 1987.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.43 mm−1
  • T = 298 (2) K
  • 0.49 × 0.33 × 0.31 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.57, T max = 0.64
  • 9558 measured reflections
  • 1752 independent reflections
  • 1404 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.089
  • S = 1.11
  • 1752 reflections
  • 141 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066755/sj2456sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066755/sj2456Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Young Scholars Foundation of Chongqing University and Chongqing University Postgraduate Science and Innovation Fund.

supplementary crystallographic information

Comment

Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). We have reported a nickel-quinclorac complex in our previous work (Zhang et al., 2007). The title compound is a cobalt(II) derivative (I) (Fig. 1) with the CoII cation located on a twofold rotation axis. The CoII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. Each quinclorac ligand chelates to the cobalt atom via a quinoline N atom and a carboxylate O atom. Adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by strong offset face-to-face π–π stacking interactions (perpendicular distance: 3.42 Å, centroid-centroid distance: 3.874 Å) between the C2–C7 and C2i–C7i benzene rings [symmetry code: (i) 2 - x, 1 - y, - z].

Experimental

A mixture of quinclorac (0.5 mmol, 0.121 g), CoCl2.6H2O (1 mmol, 0.238 g), Na2MoO4.2H2O (0.5 mmol, 0.121 g) and H2O (10 ml) was treated with aqueous HCl to a pH of 5. The mixture was placed in a Teflon-lined autoclave; this was heated at 403 K for three days. Red crystals were collected and washed with water. C H & N elemental analysis. Calculated for C20H8Cl4N2O4Co: C 44.36, H 1.48, N 5.18%; found: C 44.48, H 1.69, N 5.31%. Selected FT—IR (KBr, cm-1): 3301(w), 1581(s), 1553(m), 1482(m), 1402(m), 1383(s), 1232(m), 1139 (m), 1101(s), 761(m), 553(m), 449(m).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity [Symmetry code: (i) x,-y + 1/2,z + 1/2.]
Fig. 2.
Three dimensional supramolecular architecture constructed by interchain π–π stacking interactions.

Crystal data

[Co(C10H4Cl2NO2)2]F000 = 1076
Mr = 541.01Dx = 1.808 Mg m3Dm = 1.800 Mg m3Dm measured by not measured
Orthorhombic, PccnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 9558 reflections
a = 13.5109 (14) Åθ = 2.0–25.0º
b = 15.964 (2) ŵ = 1.43 mm1
c = 9.2157 (16) ÅT = 298 (2) K
V = 1987.7 (5) Å3Block, red
Z = 40.49 × 0.33 × 0.31 mm

Data collection

Siemens SMART CCD area-detector diffractometer1752 independent reflections
Radiation source: fine-focus sealed tube1404 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −16→13
Tmin = 0.57, Tmax = 0.64k = −18→18
9558 measured reflectionsl = −10→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0291P)2 + 3.6236P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1752 reflectionsΔρmax = 0.67 e Å3
141 parametersΔρmin = −0.76 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.75000.75000.25905 (6)0.02337 (17)
Cl10.77826 (7)0.45967 (6)−0.08682 (10)0.0438 (3)
Cl21.11100 (8)0.71113 (7)0.54570 (14)0.0641 (4)
N10.89374 (19)0.68581 (16)0.2651 (3)0.0271 (6)
O10.70392 (16)0.66997 (13)0.0924 (2)0.0296 (5)
O20.80139 (16)0.65857 (13)−0.1029 (2)0.0287 (5)
C10.7764 (2)0.64027 (19)0.0240 (3)0.0253 (7)
C20.8430 (2)0.57762 (19)0.0989 (3)0.0254 (7)
C30.8519 (2)0.4963 (2)0.0541 (4)0.0305 (7)
C40.9198 (3)0.4403 (2)0.1170 (4)0.0406 (9)
H40.92140.38460.08710.049*
C50.9831 (3)0.4674 (2)0.2212 (4)0.0405 (9)
H51.03000.43090.25940.049*
C60.9783 (2)0.5510 (2)0.2723 (4)0.0325 (8)
C70.9051 (2)0.60506 (19)0.2140 (3)0.0273 (7)
C80.9570 (2)0.7133 (2)0.3621 (4)0.0325 (8)
H80.95030.76810.39490.039*
C91.0338 (2)0.6646 (2)0.4188 (4)0.0378 (8)
C101.0438 (3)0.5835 (2)0.3773 (4)0.0397 (9)
H101.09290.54990.41750.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0269 (3)0.0247 (3)0.0185 (3)0.0027 (3)0.0000.000
Cl10.0472 (5)0.0369 (5)0.0472 (6)−0.0042 (4)−0.0028 (4)−0.0106 (4)
Cl20.0561 (6)0.0563 (7)0.0799 (8)0.0064 (5)−0.0383 (6)−0.0098 (6)
N10.0271 (14)0.0274 (14)0.0268 (15)0.0037 (11)−0.0010 (11)0.0010 (11)
O10.0316 (12)0.0338 (12)0.0233 (12)0.0062 (10)−0.0014 (10)−0.0035 (10)
O20.0344 (12)0.0307 (12)0.0211 (12)0.0016 (10)0.0015 (9)0.0020 (10)
C10.0322 (17)0.0217 (15)0.0220 (16)−0.0028 (12)−0.0030 (13)0.0000 (12)
C20.0258 (16)0.0285 (16)0.0218 (16)0.0024 (13)0.0053 (13)0.0052 (13)
C30.0331 (17)0.0261 (17)0.0323 (18)−0.0021 (14)0.0046 (14)0.0002 (14)
C40.051 (2)0.0242 (18)0.047 (2)0.0059 (16)0.0032 (19)−0.0001 (16)
C50.042 (2)0.0340 (19)0.045 (2)0.0122 (16)−0.0004 (17)0.0073 (17)
C60.0332 (18)0.0330 (18)0.0311 (19)0.0051 (14)0.0012 (14)0.0049 (15)
C70.0266 (16)0.0289 (17)0.0264 (17)0.0044 (13)0.0070 (13)0.0044 (14)
C80.0292 (17)0.0315 (18)0.037 (2)0.0018 (14)−0.0010 (15)0.0008 (15)
C90.0306 (18)0.042 (2)0.041 (2)0.0018 (15)−0.0088 (16)−0.0023 (17)
C100.0337 (19)0.045 (2)0.040 (2)0.0106 (16)−0.0065 (16)0.0053 (18)

Geometric parameters (Å, °)

Co1—O12.093 (2)C2—C31.368 (4)
Co1—O1i2.093 (2)C2—C71.422 (4)
Co1—O2ii2.057 (2)C3—C41.406 (5)
Co1—O2iii2.057 (2)C4—C51.357 (5)
Co1—N1i2.197 (2)C4—H40.9300
Co1—N12.197 (2)C5—C61.416 (5)
Cl1—C31.738 (3)C5—H50.9300
Cl2—C91.734 (4)C6—C101.410 (5)
N1—C81.312 (4)C6—C71.419 (4)
N1—C71.381 (4)C8—C91.398 (5)
O1—C11.257 (4)C8—H80.9300
O2—C11.252 (4)C9—C101.358 (5)
O2—Co1iv2.057 (2)C10—H100.9300
C1—C21.512 (4)
O2ii—Co1—O2iii103.60 (12)C7—C2—C1119.2 (3)
O2ii—Co1—O1170.96 (9)C2—C3—C4122.5 (3)
O2iii—Co1—O185.43 (8)C2—C3—Cl1119.6 (3)
O2ii—Co1—O1i85.43 (8)C4—C3—Cl1117.9 (3)
O2iii—Co1—O1i170.96 (8)C5—C4—C3120.0 (3)
O1—Co1—O1i85.55 (12)C5—C4—H4120.0
O2ii—Co1—N1i87.24 (9)C3—C4—H4120.0
O2iii—Co1—N1i90.97 (9)C4—C5—C6120.5 (3)
O1—Co1—N1i92.31 (9)C4—C5—H5119.8
O1i—Co1—N1i89.82 (9)C6—C5—H5119.8
O2ii—Co1—N190.97 (9)C10—C6—C5123.1 (3)
O2iii—Co1—N187.24 (9)C10—C6—C7118.3 (3)
O1—Co1—N189.82 (9)C5—C6—C7118.6 (3)
O1i—Co1—N192.31 (9)N1—C7—C6121.1 (3)
N1i—Co1—N1177.10 (14)N1—C7—C2118.5 (3)
C8—N1—C7118.2 (3)C6—C7—C2120.5 (3)
C8—N1—Co1115.9 (2)N1—C8—C9123.5 (3)
C7—N1—Co1121.7 (2)N1—C8—H8118.2
C1—O1—Co1111.49 (19)C9—C8—H8118.2
C1—O2—Co1iv130.7 (2)C10—C9—C8119.9 (3)
O2—C1—O1126.2 (3)C10—C9—Cl2122.6 (3)
O2—C1—C2114.9 (3)C8—C9—Cl2117.4 (3)
O1—C1—C2119.0 (3)C9—C10—C6118.8 (3)
C3—C2—C7117.8 (3)C9—C10—H10120.6
C3—C2—C1122.9 (3)C6—C10—H10120.6
O2ii—Co1—N1—C89.9 (2)Cl1—C3—C4—C5176.0 (3)
O2iii—Co1—N1—C8−93.6 (2)C3—C4—C5—C63.0 (5)
O1—Co1—N1—C8−179.1 (2)C4—C5—C6—C10−178.1 (4)
O1i—Co1—N1—C895.4 (2)C4—C5—C6—C71.0 (5)
O2ii—Co1—N1—C7166.4 (2)C8—N1—C7—C64.7 (4)
O2iii—Co1—N1—C762.8 (2)Co1—N1—C7—C6−151.2 (2)
O1—Co1—N1—C7−22.7 (2)C8—N1—C7—C2−174.0 (3)
O1i—Co1—N1—C7−108.2 (2)Co1—N1—C7—C230.1 (4)
O1i—Co1—O1—C168.44 (19)C10—C6—C7—N1−4.1 (5)
N1i—Co1—O1—C1158.1 (2)C5—C6—C7—N1176.6 (3)
N1—Co1—O1—C1−23.9 (2)C10—C6—C7—C2174.5 (3)
Co1iv—O2—C1—O18.1 (5)C5—C6—C7—C2−4.8 (5)
Co1iv—O2—C1—C2−170.54 (19)C3—C2—C7—N1−177.0 (3)
Co1—O1—C1—O2−109.2 (3)C1—C2—C7—N17.7 (4)
Co1—O1—C1—C269.4 (3)C3—C2—C7—C64.4 (4)
O2—C1—C2—C3−65.8 (4)C1—C2—C7—C6−170.9 (3)
O1—C1—C2—C3115.4 (3)C7—N1—C8—C9−1.4 (5)
O2—C1—C2—C7109.2 (3)Co1—N1—C8—C9155.8 (3)
O1—C1—C2—C7−69.6 (4)N1—C8—C9—C10−2.3 (6)
C7—C2—C3—C4−0.3 (5)N1—C8—C9—Cl2179.7 (3)
C1—C2—C3—C4174.8 (3)C8—C9—C10—C62.8 (6)
C7—C2—C3—Cl1−179.7 (2)Cl2—C9—C10—C6−179.4 (3)
C1—C2—C3—Cl1−4.6 (4)C5—C6—C10—C9179.5 (4)
C2—C3—C4—C5−3.4 (5)C7—C6—C10—C90.4 (5)

Symmetry codes: (i) −x+3/2, −y+3/2, z; (ii) x, −y+3/2, z+1/2; (iii) −x+3/2, y, z+1/2; (iv) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2456).

References

  • Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun.5, 35–37.
  • Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci.51, 171–175.
  • Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci.62, 1109–1115. [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sunohara, Y. & Matsumoto, H. (2004). Plant Sci.167, 597–606.
  • Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol.75, 73–78.
  • Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239–401.
  • Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem.21, 120–121.
  • Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography