PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m224.
Published online 2007 December 18. doi:  10.1107/S1600536807061983
PMCID: PMC2915149

Aqua­(3-methyl­isoquinoline-κN)silver(I) 4-amino­benzene­sulfonate

Abstract

In the title compound, [Ag(C10H9N)(H2O)](C6H6NO3S), the AgI atom is two-coordinated by one N atom from a 3-methyl­isoquinoline ligand and one water mol­ecule. The 4-amino­benzene­sulfonate counter-anion does not show any bonding inter­actions with the AgI atom. The compound exhibits a three-dimensional supra­molecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form π–π inter­actions, with a centroid–centroid distance of 3.54 (1) Å. The crystal studied was an inversion twin.

Related literature

For related literature, see: Atria et al. (1994 [triangle]); Cai et al. (2003 [triangle]); Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m224-scheme1.jpg

Experimental

Crystal data

  • [Ag(C10H9N)(H2O)](C6H6NO3S)
  • M r = 441.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m224-efi1.jpg
  • a = 6.779 (1) Å
  • b = 13.997 (3) Å
  • c = 18.076 (4) Å
  • V = 1715.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.32 mm−1
  • T = 293 (2) K
  • 0.47 × 0.09 × 0.06 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.529, T max = 0.911
  • 7289 measured reflections
  • 3904 independent reflections
  • 2458 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.117
  • S = 0.97
  • 3904 reflections
  • 221 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.49 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1646 Friedel pairs
  • Flack parameter: 0.46 (6)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL-Plus (Siemens, 1990 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061983/hy2101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061983/hy2101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Anshan Normal University for supporting this work.

supplementary crystallographic information

Comment

Sulfonate group can adopt various bridging coordination modes. Silver, a d10 metal, has no crystal field stabilization energy and hence no dominant geometrical preferences (Li et al., 2006). In this paper, we report the synthesis and crystal structure of a new silver(I) complex with a 4-aminobenzenesulfonate as a counter anion.

As shown in Fig. 1, the sulfonate group in the title compound does not show any bonding interactions with AgI atom. AgI atom is two-coordinated by one N atom from a neutral 3-methylisoquinoline ligand and one water molecule. Ag1, N1 and O1W are almost co-linear and the N1—Ag1—O1W angle is 179.2 (2)°. The bond distances and angles are normal (Atria et al., 1994; Cai et al., 2003). Furthermore, the compound shows a three-dimensional supramolecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form π–π interactions with a centroid-to-centroid distance of 3.54 (1) Å.

Experimental

A mixture of AgNO3 (0.170 g, 1 mmol), NaOH (0.040 g, 1 mmol) and 4-aminobenzenesulfonic acid (0.173 g, 1 mmol) in water (15 ml) was stirring for 10 min at room temperature. Then 3-methylisoquinoline (0.143 g, 1 mmol) was added to the solution with stirring for 30 min and a white precipitate was obtained. The precipitate was dissolved by dropwise addition of ammonia (5 M). Green single crystals were obtained by slow evaporation of the solution at room temperature.

Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic ring, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl group, and N—H = 0.86Å and Uiso(H) = 1.2Ueq(N) for amino group. One of H atoms of the water molecule was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O), and the other one was not located.

Figures

Fig. 1.
The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms of the water molecule are not shown.

Crystal data

[Ag(C10H9N)(H2O)](C6H6NO3S)F000 = 888
Mr = 441.25Dx = 1.709 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3904 reflections
a = 6.779 (1) Åθ = 2.5–27.5º
b = 13.997 (3) ŵ = 1.32 mm1
c = 18.076 (4) ÅT = 293 (2) K
V = 1715.2 (6) Å3Prism, colorless
Z = 40.47 × 0.09 × 0.06 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3904 independent reflections
Radiation source: rotation anode2458 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.069
T = 293(2) Kθmax = 27.5º
ω scanθmin = 1.8º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = 0→8
Tmin = 0.529, Tmax = 0.911k = −18→18
7289 measured reflectionsl = −23→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046  w = 1/[σ2(Fo2) + (0.0513P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.35 e Å3
3904 reflectionsΔρmin = −0.49 e Å3
221 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1646 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.46 (6)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.70457 (8)0.50911 (3)1.00258 (3)0.06244 (18)
C10.7687 (8)0.2835 (3)0.7059 (3)0.0348 (12)
C20.9238 (9)0.3384 (4)0.7295 (4)0.0427 (14)
H21.05200.32040.71760.051*
C30.8914 (10)0.4213 (4)0.7712 (4)0.0460 (15)
H30.99760.45790.78720.055*
C40.6990 (10)0.4487 (3)0.7887 (3)0.0399 (12)
C50.5426 (8)0.3942 (4)0.7618 (4)0.0448 (15)
H50.41340.41300.77110.054*
C60.5789 (8)0.3121 (4)0.7212 (4)0.0442 (15)
H60.47340.27590.70400.053*
C70.7119 (9)0.3173 (4)1.0899 (3)0.0461 (13)
C80.7113 (9)0.2190 (4)1.0960 (3)0.0491 (14)
H80.71160.19191.14300.059*
C90.7104 (9)0.1581 (4)1.0341 (3)0.0434 (13)
C100.7105 (10)0.0559 (4)1.0380 (4)0.0566 (16)
H100.70980.02571.08380.068*
C110.7118 (10)0.0041 (4)0.9762 (4)0.0633 (17)
H110.7126−0.06220.97960.076*
C120.7120 (11)0.0471 (4)0.9061 (4)0.0596 (16)
H120.71110.00910.86390.072*
C130.7136 (9)0.1444 (4)0.8992 (4)0.0515 (14)
H130.71530.17290.85280.062*
C140.7124 (8)0.2006 (4)0.9637 (3)0.0400 (12)
C150.7111 (9)0.3032 (4)0.9614 (3)0.0443 (13)
H150.71020.33260.91530.053*
C160.7102 (11)0.3833 (5)1.1546 (4)0.0719 (19)
H16A0.70960.44821.13740.108*
H16B0.82560.37251.18420.108*
H16C0.59440.37181.18380.108*
N10.7112 (7)0.3582 (3)1.0203 (3)0.0427 (11)
N20.6671 (7)0.5272 (3)0.8343 (3)0.0530 (13)
H2A0.54890.54310.84650.064*
H2B0.76560.55990.85040.064*
O10.7523 (6)0.0984 (2)0.7042 (3)0.0573 (13)
O20.6892 (9)0.1821 (3)0.5914 (2)0.0673 (13)
O31.0187 (7)0.1748 (3)0.6393 (3)0.0701 (15)
O1W0.7047 (8)0.6603 (3)0.9857 (3)0.0828 (15)
S10.8103 (2)0.17638 (8)0.65704 (8)0.0415 (3)
H360.593 (5)0.685 (4)0.974 (4)0.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0663 (3)0.0474 (2)0.0736 (4)−0.0021 (2)0.0064 (3)−0.0002 (3)
C10.040 (3)0.030 (2)0.035 (3)0.000 (2)−0.001 (2)0.0032 (19)
C20.039 (3)0.048 (3)0.041 (4)0.004 (3)−0.001 (3)0.000 (3)
C30.049 (3)0.038 (3)0.051 (4)−0.005 (3)−0.010 (3)−0.005 (3)
C40.053 (3)0.038 (2)0.029 (3)0.003 (3)0.001 (3)0.000 (2)
C50.037 (3)0.048 (3)0.050 (4)0.002 (3)0.006 (3)0.001 (3)
C60.040 (3)0.039 (3)0.053 (4)−0.005 (3)−0.003 (3)−0.003 (3)
C70.033 (3)0.072 (3)0.034 (3)0.000 (3)−0.001 (3)0.002 (3)
C80.044 (3)0.069 (3)0.034 (3)0.003 (3)0.001 (3)0.015 (3)
C90.033 (2)0.048 (3)0.049 (4)0.003 (3)−0.002 (3)0.015 (2)
C100.053 (3)0.052 (3)0.065 (5)0.000 (4)−0.002 (4)0.022 (3)
C110.058 (3)0.046 (3)0.086 (5)0.000 (4)−0.001 (4)0.005 (3)
C120.059 (4)0.061 (3)0.059 (5)0.002 (4)−0.004 (4)−0.015 (3)
C130.042 (3)0.065 (3)0.048 (4)0.000 (3)−0.003 (4)0.001 (3)
C140.028 (2)0.050 (3)0.041 (3)−0.002 (3)−0.005 (3)0.007 (2)
C150.041 (3)0.048 (3)0.043 (4)−0.005 (3)0.000 (3)0.014 (3)
C160.066 (4)0.094 (4)0.056 (5)0.001 (4)0.007 (5)−0.030 (4)
N10.033 (2)0.053 (2)0.041 (3)−0.003 (2)−0.002 (3)0.0053 (19)
N20.061 (3)0.047 (2)0.051 (3)−0.001 (2)0.009 (3)−0.015 (2)
O10.082 (4)0.0380 (17)0.052 (3)−0.0009 (19)0.004 (2)0.0096 (16)
O20.108 (4)0.051 (2)0.043 (3)0.007 (3)−0.021 (3)−0.0049 (18)
O30.057 (3)0.054 (2)0.099 (5)0.002 (2)0.030 (3)−0.018 (2)
O1W0.104 (4)0.065 (2)0.080 (4)0.010 (3)−0.009 (4)−0.014 (3)
S10.0534 (8)0.0328 (6)0.0383 (8)0.0019 (7)0.0015 (8)−0.0011 (5)

Geometric parameters (Å, °)

Ag1—N12.137 (4)C10—C111.331 (9)
Ag1—O1W2.138 (5)C10—H100.9300
C1—C21.370 (7)C11—C121.403 (9)
C1—C61.376 (8)C11—H110.9300
C1—S11.762 (5)C12—C131.367 (8)
C2—C31.402 (8)C12—H120.9300
C2—H20.9300C13—C141.406 (8)
C3—C41.396 (9)C13—H130.9300
C3—H30.9300C14—C151.437 (7)
C4—N21.390 (6)C15—N11.312 (7)
C4—C51.393 (8)C15—H150.9300
C5—C61.386 (8)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C81.380 (7)N2—H2A0.8600
C7—N11.383 (7)N2—H2B0.8600
C7—C161.490 (8)O1—S11.440 (4)
C8—C91.406 (8)O2—S11.445 (5)
C8—H80.9300O3—S11.449 (5)
C9—C141.405 (8)O1W—H360.86 (4)
C9—C101.431 (7)
N1—Ag1—O1W178.7 (2)C12—C11—H11119.2
C2—C1—C6119.4 (5)C13—C12—C11120.7 (6)
C2—C1—S1120.7 (4)C13—C12—H12119.7
C6—C1—S1119.9 (4)C11—C12—H12119.7
C1—C2—C3120.8 (5)C12—C13—C14118.8 (6)
C1—C2—H2119.6C12—C13—H13120.6
C3—C2—H2119.6C14—C13—H13120.6
C4—C3—C2119.7 (5)C9—C14—C13120.9 (5)
C4—C3—H3120.1C9—C14—C15116.7 (5)
C2—C3—H3120.1C13—C14—C15122.4 (5)
N2—C4—C5121.4 (6)N1—C15—C14124.2 (5)
N2—C4—C3119.8 (5)N1—C15—H15117.9
C5—C4—C3118.7 (5)C14—C15—H15117.9
C6—C5—C4120.3 (5)C7—C16—H16A109.5
C6—C5—H5119.9C7—C16—H16B109.5
C4—C5—H5119.9H16A—C16—H16B109.5
C1—C6—C5120.9 (5)C7—C16—H16C109.5
C1—C6—H6119.5H16A—C16—H16C109.5
C5—C6—H6119.5H16B—C16—H16C109.5
C8—C7—N1119.0 (5)C15—N1—C7119.7 (4)
C8—C7—C16123.8 (6)C15—N1—Ag1117.3 (4)
N1—C7—C16117.2 (5)C7—N1—Ag1123.0 (4)
C7—C8—C9122.8 (5)C4—N2—H2A120.0
C7—C8—H8118.6C4—N2—H2B120.0
C9—C8—H8118.6H2A—N2—H2B120.0
C14—C9—C8117.6 (4)Ag1—O1W—H36116 (4)
C14—C9—C10117.8 (6)O1—S1—O2111.9 (3)
C8—C9—C10124.6 (6)O1—S1—O3112.7 (3)
C11—C10—C9120.2 (6)O2—S1—O3111.9 (4)
C11—C10—H10119.9O1—S1—C1107.7 (2)
C9—C10—H10119.9O2—S1—C1105.9 (2)
C10—C11—C12121.5 (5)O3—S1—C1106.3 (2)
C10—C11—H11119.2
C6—C1—C2—C32.4 (9)C10—C9—C14—C130.3 (9)
S1—C1—C2—C3−177.1 (5)C8—C9—C14—C15−1.3 (9)
C1—C2—C3—C4−0.4 (9)C10—C9—C14—C15179.7 (6)
C2—C3—C4—N2175.7 (5)C12—C13—C14—C90.2 (10)
C2—C3—C4—C5−2.3 (9)C12—C13—C14—C15−179.1 (6)
N2—C4—C5—C6−175.1 (6)C9—C14—C15—N11.1 (10)
C3—C4—C5—C62.8 (9)C13—C14—C15—N1−179.6 (6)
C2—C1—C6—C5−1.9 (9)C14—C15—N1—C7−0.2 (9)
S1—C1—C6—C5177.7 (5)C14—C15—N1—Ag1−179.1 (5)
C4—C5—C6—C1−0.8 (9)C8—C7—N1—C15−0.4 (9)
N1—C7—C8—C90.1 (10)C16—C7—N1—C15−179.5 (7)
C16—C7—C8—C9179.1 (6)C8—C7—N1—Ag1178.4 (4)
C7—C8—C9—C140.8 (10)C16—C7—N1—Ag1−0.7 (8)
C7—C8—C9—C10179.7 (7)C2—C1—S1—O1111.1 (5)
C14—C9—C10—C11−0.3 (10)C6—C1—S1—O1−68.4 (5)
C8—C9—C10—C11−179.2 (7)C2—C1—S1—O2−129.0 (5)
C9—C10—C11—C12−0.3 (11)C6—C1—S1—O251.5 (6)
C10—C11—C12—C130.9 (11)C2—C1—S1—O3−9.8 (6)
C11—C12—C13—C14−0.8 (11)C6—C1—S1—O3170.7 (5)
C8—C9—C14—C13179.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.373.092 (6)142
N2—H2B···O3ii0.862.183.005 (7)160
O1W—H36···O2i0.86 (4)2.25 (3)3.027 (8)150 (6)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2101).

References

  • Atria, A. M., Baggio, R. F., Garland, M. T. & Spodine, E. (1994). Acta Cryst. C50, 864–866.
  • Cai, J. W., Zhou, J. S. & Lin, M. L. (2003). J. Mater. Chem.13, 1806–1811.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, F. F., Ma, J. F., Song, S. Y. & Yang, J. (2006). Cryst. Growth Des.6, 209–215.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Siemens (1990). SHELXTL-Plus Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography