PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m219–m220.
Published online 2007 December 18. doi:  10.1107/S1600536807063799
PMCID: PMC2915146

Bis(2-benzoyl-1-phenyl­ethenolato-κ2 O,O′)(ethanol-κO)dioxidouranium(VI)

Abstract

In the title compound, [U(C15H11O2)2O2(C2H6O)], the UVI atom has a penta­gonal–bipyramidal coordination geometry. The two so-called ‘-yl’ O atoms occupy the axial positions whereas four O atoms from the two chelating dibenzoyl­methanate ligands and the O atom from the ethanol mol­ecule are situated in the equatorial plane. Inter­molecular hydrogen bonds between one of the ‘-yl’ O atoms and the ethanol OH group assemble mol­ecules into a centrosymmetric dimer.

Related literature

For literature on the structural chemistry of uran­yl(VI) complexes with dibenzoyl­methanate and unidentate ligands, see: Alagar et al. (2003 [triangle], 2004 [triangle]); Fun, Kannan, Chantrapromma et al. (2002 [triangle]); Fun, Kannan, Usman et al. (2002 [triangle]); Kannan & Gerguson (1997 [triangle]); Kannan et al. (1995 [triangle], 1997 [triangle], 2000 [triangle]); Linert et al. (2001 [triangle]); Mizuoka & Ikeda (2004 [triangle]); Rajagopal et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m219-scheme1.jpg

Experimental

Crystal data

  • [U(C15H11O2)2O2(C2H6O)]
  • M r = 762.57
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m219-efi1.jpg
  • a = 9.088 (5) Å
  • b = 12.141 (7) Å
  • c = 25.878 (13) Å
  • β = 99.126 (16)°
  • V = 2819 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.81 mm−1
  • T = 173 (2) K
  • 0.40 × 0.30 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (Higashi, 1999 [triangle]) T min = 0.205, T max = 0.594
  • 26257 measured reflections
  • 6442 independent reflections
  • 4539 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.083
  • S = 1.01
  • 6442 reflections
  • 362 parameters
  • H-atom parameters constrained
  • Δρmax = 1.05 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (MSC/Rigaku, 2006 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]) and DIRDIF99 (Beurskens et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063799/gk2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063799/gk2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Structural chemistry of uranyl(VI) complexes with dibenzoylmethanate (dbm) and unidentate ligands (L) has been extensively explored (Kannan et al., 1997a,b, 1995, 2000; Rajagopal et al., 2002; Fun, Kannan, S., Chantrapromma et al. 2002;Fun, Kannan, S., Usman et al. 2002 Alagar et al., 2003, 2004). Generally, two dbm and one L are placed in an equatorial plane of the uranyl(VI) ion (UO22+). This results in a UO2(dbm)2L complex with a pentagonal-bipyramidal geometry around the uranium atom. In our previous study, we also used UO2(dbm)2DMSO complex (DMSO = dimethyl sulfoxide) as a precursor of a corresponding uranyl(V) complex, [UVO2(dbm)2DMSO]- (Mizuoka & Ikeda, 2004). In our recent experiment, we obtained crystals of the title compound, UO2(dbm)2EtOH (I), suitable for single-crystal X-ray analysis. In this paper, we report results of the structure determination of I to accumulate more structural data in a series of UO2(dbm)2L complexes.

The molecular structure of I is shown in Fig. 1. The uranium atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from dbm and EtOH in the equatorial plane. As a consequence, the coordination geometry around U in I is pentagonal bipyramidal. The deviations of the O atoms in dbm and EtOH from the equatorial plane are within 0.1 Å.

Bond lengths in I are listed in Table 1, and are similar to the structural parameters of other UO2(dbm)2L complexes reported previously. As an exception, the bond length between U and O of EtOH [U1–O7 = 2.464 (4) Å] seems to be slightly longer than the corresponding bond lengths in the UO2(dbm)2L complexes (L = di-substituted sulfoxides, dibenzoylacetone, and triphenylphosphine oxide), while shorter than those with H2O, malonanilide, and camphor. It is likely that the bond length between U and O of L (U–OL) depends on donicity of L (Linert et al. 2001). In this discussion, the steric effect of L should also be taken into account. However, it is not the case of I, because there seems to be no significant steric hindrance due to EtOH in its molecular structure shown in Fig. 1.

Intermolecular hydrogen bond between OH group of ethanol and the -yl oxygen, O7–H6···O2i [symmetry operation: (i) 1 - x, 1 - y, 1 - z], was observed between the neighboring complex molecules (Table 2). This results in a dimeric aggregate of I as shown in Fig. 2.

Experimental

Solution of uranyl nitrate hexahydrate (1.20 g) in 2 ml of ethanol was added to a hot solution (10 ml) of dibenzoylmethane (Hdbm, 0.523 g) in 10 ml of ethanol with vigorous stirring. After addition of 1 N NaOH (3 ml), the solution was concentrated by heating, and then cooled to room temperature. Deposited crystals of the title compound were filtered off, washed with ethanol, and dried under the ambient atmosphere.

Refinement

The structure was solved by direct methods, SIR97 (Altomare et al., 1999) and expanded using Fourier techniques (Beurskens et al., 1999). The H atom from the OH group was located from a difference map and the remaining H atoms were placed at calculated positions. All H atoms were refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.
: Molecular structure of UO2(dbm)2EtOH (I) with displacement elipsoids shown at the 50% probability level. Hydrogen atoms are omitted for clarity.
Fig. 2.
: Structure of the dimeric aggregate of I [molecules are related by the symmetry operation (i) 1 - x, 1 - y, 1 - z]. Dashed lines indicate intermolecular –OH···Oyl hydrogen bonds between neighboring molecules. Hydrogen ...

Crystal data

[U(C15H11O2)2O2(C2H6O)]F000 = 1472
Mr = 762.57Dx = 1.797 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 22955 reflections
a = 9.088 (5) Åθ = 3.0–27.6º
b = 12.141 (7) ŵ = 5.81 mm1
c = 25.878 (13) ÅT = 173 (2) K
β = 99.126 (16)ºPlatelet, orange
V = 2819 (3) Å30.40 × 0.30 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer6442 independent reflections
Radiation source: fine-focus sealed tube4539 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.097
Detector resolution: 10.00 pixels mm-1θmax = 27.5º
T = 173(2) Kθmin = 3.0º
ω scansh = −11→11
Absorption correction: numerical(Higashi, 1999)k = −15→15
Tmin = 0.205, Tmax = 0.594l = −33→33
26257 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.083  w = 1/[σ2(Fo2) + (0.0288P)2 + 2.9796P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6442 reflectionsΔρmax = 1.05 e Å3
362 parametersΔρmin = −0.69 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
U10.56596 (2)0.415650 (18)0.597530 (8)0.03064 (7)
O10.4826 (4)0.3391 (4)0.64300 (17)0.0415 (10)
O20.6473 (4)0.4912 (4)0.54993 (16)0.0403 (10)
O30.4712 (4)0.2914 (3)0.52999 (16)0.0396 (10)
O40.7334 (4)0.2763 (3)0.59376 (15)0.0382 (10)
O50.7648 (4)0.4744 (4)0.66069 (17)0.0419 (11)
O60.4991 (5)0.5764 (4)0.63790 (18)0.0491 (12)
O70.3209 (4)0.4808 (3)0.55377 (15)0.0372 (10)
H60.32870.50440.52300.031*
C10.2955 (7)0.2313 (5)0.4362 (2)0.0387 (14)
H10.27660.30170.44980.046*
C20.1947 (7)0.1867 (6)0.3973 (3)0.0450 (16)
H20.10630.22600.38390.054*
C30.2210 (7)0.0843 (6)0.3772 (2)0.0469 (16)
H30.15060.05350.35000.056*
C40.3477 (7)0.0271 (6)0.3962 (2)0.0453 (16)
H40.3646−0.04330.38220.054*
C50.4521 (7)0.0717 (5)0.4360 (2)0.0387 (14)
H50.54040.03210.44910.046*
C60.4260 (6)0.1754 (5)0.4566 (2)0.0312 (13)
C70.5299 (6)0.2243 (5)0.5012 (2)0.0327 (13)
C80.6823 (6)0.1955 (5)0.5101 (2)0.0330 (13)
H80.72190.15630.48370.040*
C90.7770 (6)0.2221 (5)0.5562 (2)0.0322 (13)
C100.9351 (6)0.1858 (5)0.5657 (2)0.0319 (13)
C111.0087 (7)0.1396 (5)0.5280 (3)0.0390 (15)
H110.95580.12680.49380.047*
C121.1592 (7)0.1116 (5)0.5393 (3)0.0461 (17)
H121.20810.08050.51300.055*
C131.2362 (7)0.1291 (5)0.5885 (3)0.0472 (17)
H131.33860.10990.59630.057*
C141.1658 (7)0.1747 (6)0.6271 (3)0.0483 (17)
H141.21990.18730.66110.058*
C151.0173 (7)0.2017 (5)0.6160 (3)0.0417 (15)
H150.96910.23160.64290.050*
C161.0565 (8)0.4803 (6)0.7029 (3)0.0546 (18)
H161.01760.41990.68170.066*
C171.2082 (8)0.4842 (8)0.7233 (3)0.068 (2)
H171.27220.42690.71520.082*
C181.2655 (8)0.5694 (8)0.7546 (3)0.061 (2)
H181.36840.57050.76880.073*
C191.1746 (8)0.6530 (8)0.7653 (3)0.067 (2)
H191.21370.71210.78730.080*
C201.0220 (7)0.6511 (7)0.7435 (3)0.064 (2)
H200.95970.71080.74990.076*
C210.9625 (6)0.5643 (5)0.7134 (2)0.0352 (14)
C220.8030 (6)0.5595 (5)0.6885 (2)0.0326 (14)
C230.7037 (7)0.6423 (5)0.6961 (2)0.0348 (14)
H230.73740.69880.72060.042*
C240.5560 (6)0.6478 (5)0.6700 (2)0.0313 (13)
C250.4577 (6)0.7408 (5)0.6784 (2)0.0309 (12)
C260.4787 (7)0.8051 (5)0.7236 (2)0.0416 (15)
H260.56000.78970.75050.050*
C270.3832 (8)0.8908 (5)0.7299 (3)0.0504 (18)
H270.39870.93320.76110.060*
C280.2655 (8)0.9151 (6)0.6909 (3)0.0522 (17)
H280.20010.97420.69540.063*
C290.2423 (7)0.8526 (6)0.6448 (3)0.0452 (16)
H290.16250.86970.61770.054*
C300.3369 (7)0.7660 (5)0.6394 (2)0.0374 (14)
H300.31970.72240.60850.045*
C310.1778 (7)0.4503 (6)0.5666 (3)0.054 (2)
H31A0.19220.41650.60180.065*
H31B0.13160.39440.54120.065*
C320.0755 (8)0.5455 (7)0.5659 (4)0.069 (2)
H32A−0.01980.52070.57500.083*
H32B0.05860.57820.53080.083*
H32C0.11990.60060.59130.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
U10.02771 (11)0.03283 (12)0.03087 (11)0.00087 (12)0.00310 (8)−0.00756 (11)
O10.032 (2)0.051 (3)0.040 (2)−0.004 (2)0.002 (2)−0.006 (2)
O20.032 (2)0.046 (3)0.042 (2)−0.002 (2)0.001 (2)0.002 (2)
O30.034 (2)0.040 (3)0.042 (2)−0.0005 (19)−0.004 (2)−0.014 (2)
O40.042 (2)0.039 (3)0.032 (2)0.007 (2)0.001 (2)−0.0085 (19)
O50.030 (2)0.050 (3)0.045 (3)−0.001 (2)0.002 (2)−0.018 (2)
O60.039 (2)0.048 (3)0.058 (3)0.006 (2)0.001 (2)−0.023 (2)
O70.034 (2)0.046 (3)0.032 (2)0.006 (2)0.0067 (19)−0.0010 (19)
C10.039 (3)0.034 (4)0.042 (3)−0.010 (3)0.004 (3)−0.005 (3)
C20.043 (4)0.044 (4)0.047 (4)−0.004 (3)0.002 (3)0.004 (3)
C30.044 (3)0.058 (4)0.037 (3)−0.018 (4)0.000 (3)−0.006 (4)
C40.050 (4)0.047 (4)0.036 (3)−0.010 (3)−0.001 (3)−0.008 (3)
C50.044 (3)0.036 (4)0.034 (3)−0.002 (3)0.000 (3)−0.004 (3)
C60.036 (3)0.031 (3)0.025 (3)−0.008 (3)0.002 (3)−0.002 (2)
C70.034 (3)0.029 (3)0.035 (3)−0.002 (3)0.005 (3)−0.002 (3)
C80.029 (3)0.041 (4)0.028 (3)0.003 (3)0.002 (3)−0.006 (3)
C90.033 (3)0.024 (3)0.041 (3)0.000 (2)0.006 (3)0.003 (3)
C100.034 (3)0.027 (3)0.035 (3)−0.002 (3)0.010 (3)0.003 (3)
C110.043 (3)0.034 (4)0.041 (4)−0.002 (3)0.010 (3)−0.001 (3)
C120.034 (3)0.049 (5)0.059 (4)0.006 (3)0.020 (4)0.002 (3)
C130.037 (3)0.040 (4)0.065 (5)0.005 (3)0.009 (4)0.000 (3)
C140.040 (4)0.049 (4)0.050 (4)0.007 (3)−0.013 (3)−0.003 (3)
C150.039 (3)0.041 (4)0.042 (4)0.006 (3)0.000 (3)−0.005 (3)
C160.045 (4)0.051 (5)0.061 (5)0.002 (4)−0.013 (4)0.000 (4)
C170.047 (4)0.074 (6)0.080 (6)0.006 (4)−0.004 (4)0.005 (5)
C180.039 (4)0.097 (7)0.045 (4)−0.018 (5)0.000 (4)0.009 (4)
C190.043 (4)0.105 (7)0.052 (5)−0.031 (5)0.008 (4)−0.022 (5)
C200.033 (4)0.088 (6)0.071 (6)−0.015 (4)0.014 (4)−0.037 (5)
C210.032 (3)0.047 (4)0.027 (3)−0.010 (3)0.004 (3)0.000 (3)
C220.035 (3)0.037 (4)0.029 (3)−0.005 (3)0.014 (3)0.000 (2)
C230.040 (3)0.033 (3)0.032 (3)−0.011 (3)0.008 (3)−0.007 (3)
C240.035 (3)0.031 (3)0.031 (3)−0.006 (3)0.018 (3)−0.002 (2)
C250.038 (3)0.027 (3)0.030 (3)−0.005 (3)0.011 (3)−0.004 (2)
C260.049 (4)0.043 (4)0.032 (3)0.003 (3)0.003 (3)−0.008 (3)
C270.069 (5)0.040 (4)0.042 (4)0.010 (3)0.010 (4)−0.014 (3)
C280.068 (5)0.041 (4)0.048 (4)0.017 (4)0.011 (4)−0.003 (4)
C290.044 (4)0.051 (4)0.041 (4)0.005 (3)0.006 (3)0.003 (3)
C300.045 (3)0.036 (4)0.033 (3)0.002 (3)0.008 (3)−0.006 (3)
C310.035 (3)0.068 (5)0.057 (5)−0.005 (3)0.000 (4)0.006 (4)
C320.042 (4)0.082 (6)0.084 (6)0.009 (4)0.009 (4)−0.016 (5)

Geometric parameters (Å, °)

U1—O11.762 (4)C14—C151.374 (9)
U1—O21.787 (4)C14—H140.9500
U1—O42.288 (4)C15—H150.9500
U1—O62.339 (4)C16—C211.384 (9)
U1—O52.347 (4)C16—C171.396 (10)
U1—O32.365 (4)C16—H160.9500
U1—O72.464 (4)C17—C181.365 (11)
O3—C71.278 (6)C17—H170.9500
O4—C91.288 (6)C18—C191.365 (11)
O5—C221.276 (7)C18—H180.9500
O6—C241.253 (7)C19—C201.411 (10)
O7—C311.440 (7)C19—H190.9500
O7—H60.8596C20—C211.370 (9)
C1—C21.362 (9)C20—H200.9500
C1—C61.395 (8)C21—C221.492 (8)
C1—H10.9500C22—C231.385 (8)
C2—C31.383 (9)C23—C241.405 (8)
C2—H20.9500C23—H230.9500
C3—C41.368 (9)C24—C251.477 (8)
C3—H30.9500C25—C261.395 (8)
C4—C51.395 (9)C25—C301.403 (8)
C4—H40.9500C26—C271.381 (8)
C5—C61.403 (8)C26—H260.9500
C5—H50.9500C27—C281.380 (10)
C6—C71.492 (8)C27—H270.9500
C7—C81.411 (8)C28—C291.401 (9)
C8—C91.392 (8)C28—H280.9500
C8—H80.9500C29—C301.380 (8)
C9—C101.486 (8)C29—H290.9500
C10—C111.386 (8)C30—H300.9500
C10—C151.408 (9)C31—C321.481 (10)
C11—C121.394 (9)C31—H31A0.9900
C11—H110.9500C31—H31B0.9900
C12—C131.368 (10)C32—H32A0.9800
C12—H120.9500C32—H32B0.9800
C13—C141.383 (9)C32—H32C0.9800
C13—H130.9500
O1—U1—O2178.36 (19)C12—C13—H13119.8
O1—U1—O489.86 (18)C14—C13—H13119.8
O2—U1—O490.00 (17)C15—C14—C13119.8 (7)
O1—U1—O688.42 (19)C15—C14—H14120.1
O2—U1—O692.55 (19)C13—C14—H14120.1
O4—U1—O6149.05 (15)C14—C15—C10121.2 (6)
O1—U1—O593.46 (18)C14—C15—H15119.4
O2—U1—O588.12 (18)C10—C15—H15119.4
O4—U1—O579.09 (15)C21—C16—C17120.3 (7)
O6—U1—O570.19 (15)C21—C16—H16119.9
O1—U1—O390.71 (18)C17—C16—H16119.9
O2—U1—O387.70 (18)C18—C17—C16120.6 (8)
O4—U1—O370.35 (14)C18—C17—H17119.7
O6—U1—O3140.55 (15)C16—C17—H17119.7
O5—U1—O3149.14 (14)C17—C18—C19119.9 (7)
O1—U1—O791.33 (17)C17—C18—H18120.0
O2—U1—O787.75 (16)C19—C18—H18120.0
O4—U1—O7140.97 (14)C18—C19—C20119.6 (7)
O6—U1—O769.97 (15)C18—C19—H19120.2
O5—U1—O7139.70 (14)C20—C19—H19120.2
O3—U1—O770.62 (14)C21—C20—C19120.9 (7)
C7—O3—U1134.5 (4)C21—C20—H20119.5
C9—O4—U1134.1 (4)C19—C20—H20119.5
C22—O5—U1138.5 (4)C20—C21—C16118.6 (6)
C24—O6—U1139.8 (4)C20—C21—C22123.0 (6)
C31—O7—U1126.5 (4)C16—C21—C22118.3 (6)
C31—O7—H6120.6O5—C22—C23122.9 (6)
U1—O7—H6109.3O5—C22—C21115.7 (5)
C2—C1—C6121.2 (6)C23—C22—C21121.4 (5)
C2—C1—H1119.4C22—C23—C24124.0 (6)
C6—C1—H1119.4C22—C23—H23118.0
C1—C2—C3119.9 (7)C24—C23—H23118.0
C1—C2—H2120.0O6—C24—C23123.3 (5)
C3—C2—H2120.0O6—C24—C25115.5 (5)
C4—C3—C2120.6 (6)C23—C24—C25121.2 (5)
C4—C3—H3119.7C26—C25—C30117.9 (6)
C2—C3—H3119.7C26—C25—C24123.1 (6)
C3—C4—C5120.2 (6)C30—C25—C24118.9 (5)
C3—C4—H4119.9C27—C26—C25121.1 (6)
C5—C4—H4119.9C27—C26—H26119.4
C4—C5—C6119.5 (6)C25—C26—H26119.4
C4—C5—H5120.2C28—C27—C26120.2 (6)
C6—C5—H5120.2C28—C27—H27119.9
C1—C6—C5118.5 (6)C26—C27—H27119.9
C1—C6—C7119.7 (5)C27—C28—C29120.0 (6)
C5—C6—C7121.7 (5)C27—C28—H28120.0
O3—C7—C8123.5 (5)C29—C28—H28120.0
O3—C7—C6115.6 (5)C30—C29—C28119.3 (6)
C8—C7—C6120.9 (5)C30—C29—H29120.4
C9—C8—C7122.7 (5)C28—C29—H29120.4
C9—C8—H8118.6C29—C30—C25121.5 (6)
C7—C8—H8118.6C29—C30—H30119.3
O4—C9—C8122.9 (5)C25—C30—H30119.3
O4—C9—C10115.6 (5)O7—C31—C32112.6 (6)
C8—C9—C10121.6 (5)O7—C31—H31A109.1
C11—C10—C15117.6 (6)C32—C31—H31A109.1
C11—C10—C9124.4 (6)O7—C31—H31B109.1
C15—C10—C9118.0 (5)C32—C31—H31B109.1
C10—C11—C12121.1 (7)H31A—C31—H31B107.8
C10—C11—H11119.5C31—C32—H32A109.5
C12—C11—H11119.5C31—C32—H32B109.5
C13—C12—C11119.9 (6)H32A—C32—H32B109.5
C13—C12—H12120.1C31—C32—H32C109.5
C11—C12—H12120.1H32A—C32—H32C109.5
C12—C13—C14120.4 (6)H32B—C32—H32C109.5
O1—U1—O3—C7−115.6 (5)C7—C8—C9—O4−1.0 (9)
O2—U1—O3—C764.8 (5)C7—C8—C9—C10176.9 (5)
O4—U1—O3—C7−26.0 (5)O4—C9—C10—C11−171.1 (5)
O6—U1—O3—C7156.0 (5)C8—C9—C10—C1110.8 (9)
O5—U1—O3—C7−17.7 (7)O4—C9—C10—C157.3 (8)
O7—U1—O3—C7153.2 (6)C8—C9—C10—C15−170.7 (6)
O1—U1—O4—C9129.1 (5)C15—C10—C11—C12−1.0 (9)
O2—U1—O4—C9−49.3 (5)C9—C10—C11—C12177.4 (6)
O6—U1—O4—C9−144.2 (5)C10—C11—C12—C130.4 (10)
O5—U1—O4—C9−137.3 (5)C11—C12—C13—C14−0.2 (10)
O3—U1—O4—C938.3 (5)C12—C13—C14—C150.6 (11)
O7—U1—O4—C937.2 (6)C13—C14—C15—C10−1.2 (10)
O1—U1—O5—C22−99.8 (6)C11—C10—C15—C141.4 (9)
O2—U1—O5—C2280.7 (6)C9—C10—C15—C14−177.1 (6)
O4—U1—O5—C22171.0 (6)C21—C16—C17—C181.2 (12)
O6—U1—O5—C22−12.7 (5)C16—C17—C18—C19−1.3 (12)
O3—U1—O5—C22163.0 (5)C17—C18—C19—C20−0.6 (12)
O7—U1—O5—C22−3.6 (7)C18—C19—C20—C212.6 (13)
O1—U1—O6—C24100.7 (7)C19—C20—C21—C16−2.7 (11)
O2—U1—O6—C24−80.7 (7)C19—C20—C21—C22−178.5 (7)
O4—U1—O6—C2413.6 (8)C17—C16—C21—C200.8 (11)
O5—U1—O6—C246.4 (6)C17—C16—C21—C22176.8 (6)
O3—U1—O6—C24−170.1 (6)U1—O5—C22—C2316.0 (9)
O7—U1—O6—C24−167.3 (7)U1—O5—C22—C21−164.9 (4)
O1—U1—O7—C31−2.7 (5)C20—C21—C22—O5178.6 (6)
O2—U1—O7—C31175.9 (5)C16—C21—C22—O52.7 (8)
O4—U1—O7—C3188.7 (5)C20—C21—C22—C23−2.3 (9)
O6—U1—O7—C31−90.6 (5)C16—C21—C22—C23−178.2 (6)
O5—U1—O7—C31−99.7 (5)O5—C22—C23—C24−7.2 (9)
O3—U1—O7—C3187.6 (5)C21—C22—C23—C24173.8 (5)
C6—C1—C2—C3−0.1 (9)U1—O6—C24—C23−3.9 (10)
C1—C2—C3—C40.1 (10)U1—O6—C24—C25175.3 (4)
C2—C3—C4—C5−0.2 (10)C22—C23—C24—O61.6 (9)
C3—C4—C5—C60.3 (9)C22—C23—C24—C25−177.5 (5)
C2—C1—C6—C50.2 (9)O6—C24—C25—C26156.8 (6)
C2—C1—C6—C7−176.9 (5)C23—C24—C25—C26−24.0 (8)
C4—C5—C6—C1−0.3 (8)O6—C24—C25—C30−22.9 (8)
C4—C5—C6—C7176.7 (5)C23—C24—C25—C30156.3 (5)
U1—O3—C7—C810.9 (9)C30—C25—C26—C270.2 (9)
U1—O3—C7—C6−169.8 (4)C24—C25—C26—C27−179.5 (6)
C1—C6—C7—O324.7 (8)C25—C26—C27—C28−0.7 (10)
C5—C6—C7—O3−152.3 (5)C26—C27—C28—C290.1 (11)
C1—C6—C7—C8−156.1 (6)C27—C28—C29—C301.1 (10)
C5—C6—C7—C826.9 (8)C28—C29—C30—C25−1.6 (10)
O3—C7—C8—C911.7 (10)C26—C25—C30—C291.0 (9)
C6—C7—C8—C9−167.5 (5)C24—C25—C30—C29−179.3 (5)
U1—O4—C9—C8−34.8 (8)U1—O7—C31—C32137.6 (5)
U1—O4—C9—C10147.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H6···O2i0.861.942.765 (5)162

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2123).

References

  • Alagar, M., Kannan, S., Rajagopal, K., Venugopal, V., Krishnakumar, R. V., Nandhini, M. S. & Natarajan, S. (2004). Acta Cryst. E60, m773–m775.
  • Alagar, M., Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. & Natarajan, S. (2003). Acta Cryst. E59, m524–m526.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Kannan, S., Chantrapromma, S., Razak, I. A. & Usman, A. (2002). Acta Cryst. E58, m463–m465.
  • Fun, H.-K., Kannan, S., Usman, A., Razak, I. A. & Chantrapromma, S. (2002). Acta Cryst. C58, m368–m370. [PubMed]
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Kannan, S. & Gerguson, G. (1997). Inorg. Chem.36, 1724–1725. [PubMed]
  • Kannan, S., Pillai, M. R. A., Venugopal, V., Droege, P. A. & Barnes, C. L. (1997). Inorg. Chim. Acta, 254, 113–117.
  • Kannan, S., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, e545–e546. [PubMed]
  • Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A. & Barnes, C. L. (1995). Polyhedron, 15, 97–101.
  • Linert, W., Fukuda, Y. & Camard, A. (2001). Coord. Chem. Rev.218, 113–152.
  • Mizuoka, K. & Ikeda, Y. (2004). Radiochim. Acta, 92, 631–635.
  • MSC/Rigaku (2006). CrystalStructure MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. & Natarajan, S. (2002). Acta Cryst. E58, m316–m318.
  • Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography