PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m218.
Published online 2007 December 18. doi:  10.1107/S1600536807063325
PMCID: PMC2915145

Di-μ-thio­cyanato-bis­({2,4-dichloro-6-[2-(diethyl­amino)ethyl­imino­meth­yl]phenolato}copper(II))

Abstract

The title compound, [Cu2(NCS)2(C13H17Cl2N2O)2], was obtained by the reaction of 3,5-dichloro­salicylaldehyde, N,N-diethyl­ethane-1,2-diamine, sodium thio­cyanate, and copper(II) acetate in an ethanol solution. It crystallizes as a centrosymmetric dimer with a very long Cu(...)S axial bond [2.972 (3) Å]. The Cu atom is five-coordinated by the three donor atoms of the Schiff base ligand, 2,4-dichloro-6-[(2-diethyl­amino­ethyl­imino)meth­yl]phenol, one N atom of a thio­cyanate group, and one S atom of a symmetry-related thio­cyanate group, forming a slightly distorted square-pyramidal geometry.

Related literature

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005 [triangle]); Shi et al. (2007 [triangle]); Singh et al. (2006 [triangle], 2007 [triangle]); Zhong et al. (2006 [triangle]). For related literature, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m218-scheme1.jpg

Experimental

Crystal data

  • [Cu2(NCS)2(C13H17Cl2N2O)2]
  • M r = 409.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m218-efi1.jpg
  • a = 8.632 (2) Å
  • b = 14.115 (3) Å
  • c = 14.002 (3) Å
  • β = 90.491 (4)°
  • V = 1706.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.72 mm−1
  • T = 293 (2) K
  • 0.20 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.725, T max = 0.771
  • 13451 measured reflections
  • 3516 independent reflections
  • 3046 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.118
  • S = 1.06
  • 3516 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 1.34 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063325/su2031sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063325/su2031Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Minjiang University for financial support.

supplementary crystallographic information

Comment

Schiff base compounds have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005). Metal complexes derived from the Schiff bases have also been shown to have excellent biological activity (Singh et al., 2006, 2007; Zhong et al., 2006). As part of our investigations of the structures of metal complexes derived from Schiff bases, we report herein the crystal structure of the title copper complex, (I).

Compound (I) is a centrosymmetric dinuclear copper(II) complex (Fig. 1). The Cu atom is five-coordinated by the three donor atoms (O1, N1 and N2) of the Schiff base ligand 2,4-dichloro-6-[(2-diethylaminoethylimino)methyl]phenol, one N atom of a thiocyanate group, and one S atom of the centrosymmetrically related thiocyanate group, so forming a slightly distorted square-pyramidal geometry. The Cu atom is displaced out of the best least-squares plane defined by the four basal donor atoms by 0.123 (2) Å. Apart from the long Cu···S axial bond [2.972 (3) Å], the other coordination bond distances and angles are within normal ranges (Allen et al., 1987).

Experimental

The title compound was obtained by the reaction of equimolar amounts of 3,5-dichlorosalicylaldehyde, N,N-diethylethane-1,2-diamine, sodium thiocyanate, and copper acetate in an ethanol solution. Blue block-like single crystals were obtained by slow evaporation of the filtrate in air.

Refinement

H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93–0.97Å and Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
The molecular structure of complex (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

[Cu2(NCS)2(C13H17Cl2N2O)2]F000 = 836
Mr = 409.81Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 8.632 (2) ÅCell parameters from 6502 reflections
b = 14.115 (3) Åθ = 2.4–27.7º
c = 14.002 (3) ŵ = 1.72 mm1
β = 90.491 (4)ºT = 293 (2) K
V = 1706.0 (6) Å3Block, blue
Z = 40.20 × 0.17 × 0.16 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer3516 independent reflections
Radiation source: fine-focus sealed tube3046 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 293(2) Kθmax = 26.5º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −10→10
Tmin = 0.725, Tmax = 0.771k = −17→17
13451 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.058P)2 + 2.2599P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3516 reflectionsΔρmax = 1.34 e Å3
201 parametersΔρmin = −0.67 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.13607 (4)0.16622 (3)0.06969 (3)0.03794 (14)
O1−0.0063 (3)0.22330 (17)−0.01736 (16)0.0489 (6)
N10.1165 (3)0.2683 (2)0.16144 (18)0.0410 (6)
N20.3213 (3)0.1254 (2)0.1558 (2)0.0444 (6)
N30.1658 (4)0.0673 (2)−0.0253 (2)0.0477 (7)
Cl1−0.21684 (12)0.25400 (7)−0.17482 (6)0.0585 (3)
Cl2−0.33491 (14)0.58481 (8)−0.00046 (9)0.0716 (3)
S10.10771 (10)−0.05935 (7)−0.17261 (6)0.0476 (2)
C1−0.0792 (4)0.3018 (2)−0.0076 (2)0.0396 (7)
C2−0.0634 (4)0.3643 (2)0.0713 (2)0.0419 (7)
C3−0.1427 (4)0.4516 (3)0.0723 (3)0.0498 (8)
H3−0.12930.49270.12360.060*
C4−0.2389 (4)0.4760 (3)−0.0013 (3)0.0510 (9)
C5−0.2616 (4)0.4157 (3)−0.0785 (3)0.0490 (8)
H5−0.32790.4327−0.12830.059*
C6−0.1850 (4)0.3311 (2)−0.0802 (2)0.0435 (7)
C70.0343 (4)0.3430 (2)0.1518 (2)0.0450 (8)
H70.03820.38720.20100.054*
C80.2109 (5)0.2585 (3)0.2480 (3)0.0621 (11)
H8A0.29390.30480.24770.075*
H8B0.14770.26980.30380.075*
C90.2742 (7)0.1654 (3)0.2521 (3)0.0741 (14)
H9A0.19830.12340.28030.089*
H9B0.36440.16620.29390.089*
C100.4629 (6)0.1738 (4)0.1273 (4)0.0883 (17)
H10A0.44970.24090.13950.106*
H10B0.54660.15180.16830.106*
C110.5099 (6)0.1626 (5)0.0307 (4)0.114 (3)
H11A0.52190.09640.01680.171*
H11B0.60690.19450.02140.171*
H11C0.43280.1893−0.01110.171*
C120.3232 (5)0.0217 (3)0.1662 (3)0.0581 (10)
H12A0.3370−0.00570.10340.070*
H12B0.22210.00200.18860.070*
C130.4448 (5)−0.0206 (3)0.2326 (3)0.0661 (11)
H13A0.54560.00090.21400.099*
H13B0.4406−0.08840.22880.099*
H13C0.4249−0.00100.29700.099*
C140.1388 (3)0.0159 (2)−0.0861 (2)0.0361 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0441 (2)0.0384 (2)0.0312 (2)−0.00149 (16)−0.00774 (16)−0.00402 (15)
O10.0670 (16)0.0426 (13)0.0368 (12)0.0082 (11)−0.0161 (11)−0.0057 (10)
N10.0423 (15)0.0514 (16)0.0293 (13)−0.0062 (12)−0.0044 (11)−0.0049 (11)
N20.0438 (15)0.0452 (16)0.0441 (15)−0.0062 (12)−0.0110 (12)0.0016 (12)
N30.0522 (17)0.0497 (17)0.0410 (15)0.0019 (13)−0.0060 (13)−0.0096 (13)
Cl10.0706 (6)0.0653 (6)0.0392 (5)0.0004 (5)−0.0145 (4)0.0011 (4)
Cl20.0714 (7)0.0571 (6)0.0867 (8)0.0217 (5)0.0217 (6)0.0136 (5)
S10.0468 (5)0.0543 (5)0.0417 (5)−0.0034 (4)0.0008 (4)−0.0165 (4)
C10.0425 (17)0.0404 (17)0.0358 (16)−0.0053 (14)0.0011 (13)0.0028 (13)
C20.0423 (17)0.0428 (17)0.0406 (17)−0.0016 (14)0.0037 (13)0.0003 (14)
C30.052 (2)0.048 (2)0.050 (2)0.0001 (16)0.0146 (16)−0.0041 (16)
C40.0471 (19)0.047 (2)0.059 (2)0.0088 (15)0.0167 (17)0.0094 (17)
C50.0420 (18)0.056 (2)0.049 (2)0.0045 (15)0.0060 (15)0.0153 (16)
C60.0444 (17)0.050 (2)0.0359 (16)−0.0046 (14)0.0023 (13)0.0064 (14)
C70.0479 (19)0.049 (2)0.0379 (17)−0.0054 (15)0.0026 (14)−0.0117 (14)
C80.056 (2)0.094 (3)0.0361 (18)0.006 (2)−0.0135 (16)−0.0129 (19)
C90.111 (4)0.066 (3)0.045 (2)0.014 (2)−0.031 (2)−0.0106 (19)
C100.057 (3)0.117 (5)0.091 (4)−0.022 (3)−0.014 (3)0.028 (3)
C110.057 (3)0.187 (7)0.100 (5)−0.016 (4)0.020 (3)−0.061 (5)
C120.052 (2)0.045 (2)0.077 (3)0.0055 (16)−0.0224 (19)−0.0060 (19)
C130.058 (2)0.061 (2)0.079 (3)0.015 (2)−0.020 (2)0.000 (2)
C140.0315 (15)0.0419 (17)0.0350 (15)0.0029 (12)−0.0002 (12)−0.0001 (13)

Geometric parameters (Å, °)

Cu1—O11.903 (2)C4—C51.389 (6)
Cu1—N11.939 (3)C5—C61.365 (5)
Cu1—N31.947 (3)C5—H50.9300
Cu1—N22.076 (3)C7—H70.9300
Cu1—S1i2.972 (3)C8—C91.423 (6)
O1—C11.282 (4)C8—H8A0.9700
N1—C71.278 (4)C8—H8B0.9700
N1—C81.461 (4)C9—H9A0.9700
N2—C101.459 (5)C9—H9B0.9700
N2—C121.470 (5)C10—C111.424 (8)
N2—C91.520 (5)C10—H10A0.9700
N3—C141.141 (4)C10—H10B0.9700
Cl1—C61.734 (4)C11—H11A0.9600
Cl2—C41.745 (4)C11—H11B0.9600
S1—C141.632 (3)C11—H11C0.9600
C1—C21.420 (5)C12—C131.518 (5)
C1—C61.422 (5)C12—H12A0.9700
C2—C31.410 (5)C12—H12B0.9700
C2—C71.434 (5)C13—H13A0.9600
C3—C41.362 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
O1—Cu1—N192.89 (11)N1—C7—H7117.3
O1—Cu1—N387.38 (11)C2—C7—H7117.3
N1—Cu1—N3176.78 (12)C9—C8—N1109.4 (3)
O1—Cu1—N2168.48 (11)C9—C8—H8A109.8
N1—Cu1—N283.82 (12)N1—C8—H8A109.8
N3—Cu1—N295.29 (12)C9—C8—H8B109.8
O1—Cu1—S1i93.98 (12)N1—C8—H8B109.8
N1—Cu1—S1i89.43 (12)H8A—C8—H8B108.2
N2—Cu1—S1i97.02 (12)C8—C9—N2114.4 (4)
N3—Cu1—S1i93.75 (12)C8—C9—H9A108.7
C1—O1—Cu1127.8 (2)N2—C9—H9A108.7
C7—N1—C8118.1 (3)C8—C9—H9B108.7
C7—N1—Cu1126.5 (2)N2—C9—H9B108.7
C8—N1—Cu1115.4 (2)H9A—C9—H9B107.6
C10—N2—C12119.0 (4)C11—C10—N2117.0 (5)
C10—N2—C9107.4 (4)C11—C10—H10A108.0
C12—N2—C9106.6 (3)N2—C10—H10A108.0
C10—N2—Cu1110.7 (3)C11—C10—H10B108.0
C12—N2—Cu1110.0 (2)N2—C10—H10B108.0
C9—N2—Cu1101.6 (2)H10A—C10—H10B107.3
C14—N3—Cu1159.8 (3)C10—C11—H11A109.5
O1—C1—C2125.2 (3)C10—C11—H11B109.5
O1—C1—C6119.2 (3)H11A—C11—H11B109.5
C2—C1—C6115.6 (3)C10—C11—H11C109.5
C3—C2—C1120.5 (3)H11A—C11—H11C109.5
C3—C2—C7117.2 (3)H11B—C11—H11C109.5
C1—C2—C7122.3 (3)N2—C12—C13117.3 (3)
C4—C3—C2120.4 (3)N2—C12—H12A108.0
C4—C3—H3119.8C13—C12—H12A108.0
C2—C3—H3119.8N2—C12—H12B108.0
C3—C4—C5121.0 (3)C13—C12—H12B108.0
C3—C4—Cl2120.3 (3)H12A—C12—H12B107.2
C5—C4—Cl2118.7 (3)C12—C13—H13A109.5
C6—C5—C4119.0 (3)C12—C13—H13B109.5
C6—C5—H5120.5H13A—C13—H13B109.5
C4—C5—H5120.5C12—C13—H13C109.5
C5—C6—C1123.4 (3)H13A—C13—H13C109.5
C5—C6—Cl1119.2 (3)H13B—C13—H13C109.5
C1—C6—Cl1117.4 (3)N3—C14—S1177.6 (3)
N1—C7—C2125.3 (3)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2031).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem.40, 225–229. [PubMed]
  • Sheldrick, G. M. (2001). SHELXTL Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem.42, 558–564. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem.41, 147–153. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem.42, 394–402. [PubMed]
  • Zhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem.41, 1090–1092. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography