PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m216.
Published online 2007 December 18. doi:  10.1107/S1600536807061764
PMCID: PMC2915143

Bis[μ-2-(benzyl­imino­meth­yl)-4-chloro­phenolato]bis[chloridocopper(II)]

Abstract

The title complex, [Cu2(C14H11ClNO)2Cl2], has a centrosymmetric dinuclear structure where two symmetry-related copper(II) metal centres are bridged by the O atoms of two phen­oxy groups. Each copper(II) centre displays a distorted tetra­hedral coordination provided by one N atom and two O atoms from two Schiff base ligands and by one Cl atom. The Cu(...)Cu separation is 3.0702 (9) Å.

Related literature

For related literature, see: Bencini & Mani (1988 [triangle]); Jiang et al. (2004 [triangle]); Liu & Su (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m216-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C14H11ClNO)2Cl2]
  • M r = 687.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m216-efi1.jpg
  • a = 22.572 (3) Å
  • b = 9.3964 (13) Å
  • c = 16.649 (2) Å
  • β = 130.724 (2)°
  • V = 2676.2 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.02 mm−1
  • T = 298 (2) K
  • 0.55 × 0.43 × 0.30 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.379, T max = 0.548
  • 6545 measured reflections
  • 2364 independent reflections
  • 1910 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.071
  • S = 1.04
  • 2364 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061764/rz2176sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061764/rz2176Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for research grant No. 02js40 from the Phytochemistry Key Laboratory of Shaanxi Province.

supplementary crystallographic information

Comment

During the past two decades, considerable attention has been paid to the chemistry of heterocyclic compounds and complexes with metal ions due to their chelating ability and their potentially beneficial chemical and biological activities. Dinuclear copper(II) units exist on active sites of many metalloenzymes and metalloproteins such as, for example, hemocyanin, tyrosinase and cytochrome oxidase. Schiff base complexes containing salicylaldehyde and amine derivatives have been also often reported. The complexes of salicylaldehyde with polyamines and bis(phenoxy)-bridged dinuclear copper(II) complexes are sparse. As an extension of our work on the structural characterization of Schiff base complexes, the crystal structure of a new dinuclear copper(II) compound is reported here.

The molecular structure of the title complex consists of two centrosymmetrically related [CuL]2+ units [where L is 4-chloro-2-(benzylaminethyl)-phenolato], which are bridged by the oxygen atoms of two phenoxy groups in such a way as to define an NCuO2CuN core. A chloride anion completes the coordination around each Cu atom (Fig. 1), thus defining a distorted tetrahedral geometry for the metal centres, with angles subtended at the copper(II) atoms in the range 93.43 (8)–149.90 (6)° (Table 1). The Cu—N, Cu—O, Cu—Cl bond lengths of 1.953 (2), 1.9334 (16) and 2.1934 (8) Å respectively (Table 1) are comparable with those reported previously (Bencini & Mani, 1988; Jiang et al., 2004; Liu & Su, 1996). The Cu···Cu separation within the dimer is 3.0702 (9) Å. The crystal packing (Fig. 2) is governed only by van der Waals interactions.

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg), CuCl2.2H2O (0.1 mmol, 17.05 mg) and benzylamine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of the title compound were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 48.88%, H 3.20%, N 4.07%; calculated for (Cu2C28H22N2O2Cl4): C48.9%, H 3.20%, N 4.08%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The structure of the title compound with 30% probability ellipsoids. H atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation (0.5 - x, 1.5 - y, -z).
Fig. 2.
The crystal packing of the title compound viewed along the b axis. H atoms are omitted for clarity.

Crystal data

[Cu2(C14H11ClNO)2Cl2]F000 = 1384
Mr = 687.36Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3416 reflections
a = 22.572 (3) Åθ = 2.4–27.9º
b = 9.3964 (13) ŵ = 2.02 mm1
c = 16.649 (2) ÅT = 298 (2) K
β = 130.724 (2)ºBlock, brown
V = 2676.2 (6) Å30.55 × 0.43 × 0.30 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer2364 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −26→25
Tmin = 0.379, Tmax = 0.548k = −11→11
6545 measured reflectionsl = −12→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071  w = 1/[σ2(Fo2) + (0.0314P)2 + 2.8567P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2364 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.219816 (18)0.74677 (3)0.06012 (3)0.03095 (12)
Cl10.39728 (5)0.05623 (8)0.19873 (7)0.0525 (2)
Cl20.21728 (4)0.90619 (8)0.15408 (6)0.0452 (2)
N10.17933 (12)0.5810 (2)0.08161 (17)0.0312 (5)
O10.27824 (11)0.63270 (18)0.03605 (15)0.0349 (4)
C10.20487 (14)0.4550 (3)0.09374 (19)0.0300 (6)
H10.17970.38310.09980.036*
C20.26936 (14)0.4117 (3)0.09912 (19)0.0277 (5)
C30.30487 (14)0.5008 (3)0.0735 (2)0.0287 (6)
C40.37020 (15)0.4504 (3)0.0898 (2)0.0350 (6)
H40.39500.50900.07470.042*
C50.39847 (15)0.3151 (3)0.1281 (2)0.0374 (6)
H50.44220.28290.13900.045*
C60.36163 (16)0.2276 (3)0.1502 (2)0.0345 (6)
C70.29761 (15)0.2734 (3)0.1358 (2)0.0303 (6)
H70.27310.21280.15030.036*
C80.11883 (16)0.6011 (3)0.0906 (2)0.0401 (7)
H8A0.14240.64770.15750.048*
H8B0.10050.50840.09180.048*
C90.04988 (15)0.6876 (3)0.0021 (2)0.0327 (6)
C100.02317 (17)0.6889 (3)−0.0990 (2)0.0433 (7)
H100.04900.6354−0.11500.052*
C11−0.04162 (19)0.7684 (3)−0.1780 (3)0.0541 (9)
H11−0.05830.7693−0.24590.065*
C12−0.08114 (18)0.8456 (3)−0.1565 (3)0.0550 (8)
H12−0.12490.8988−0.20940.066*
C13−0.0555 (2)0.8436 (4)−0.0561 (3)0.0708 (11)
H13−0.08240.8948−0.04090.085*
C140.0098 (2)0.7667 (4)0.0228 (3)0.0599 (10)
H140.02710.76810.09100.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0324 (2)0.0343 (2)0.0364 (2)0.00520 (14)0.02696 (18)0.00292 (15)
Cl10.0578 (5)0.0436 (4)0.0659 (5)0.0233 (4)0.0447 (5)0.0165 (4)
Cl20.0497 (4)0.0505 (4)0.0440 (4)0.0045 (4)0.0343 (4)−0.0057 (4)
N10.0265 (11)0.0389 (13)0.0367 (13)0.0068 (10)0.0243 (11)0.0070 (10)
O10.0424 (11)0.0340 (10)0.0467 (11)0.0088 (9)0.0371 (10)0.0076 (9)
C10.0253 (13)0.0392 (15)0.0290 (14)0.0019 (12)0.0192 (13)0.0055 (12)
C20.0226 (13)0.0338 (14)0.0243 (13)0.0034 (11)0.0142 (12)0.0009 (11)
C30.0279 (14)0.0315 (14)0.0261 (14)0.0026 (11)0.0174 (12)0.0002 (11)
C40.0305 (14)0.0419 (16)0.0402 (16)0.0016 (12)0.0264 (14)0.0000 (13)
C50.0297 (14)0.0448 (16)0.0422 (17)0.0096 (13)0.0255 (14)0.0030 (14)
C60.0326 (15)0.0370 (15)0.0294 (14)0.0096 (12)0.0182 (13)0.0036 (12)
C70.0283 (14)0.0358 (15)0.0268 (14)0.0014 (11)0.0179 (13)0.0011 (11)
C80.0368 (16)0.0508 (17)0.0495 (18)0.0126 (13)0.0356 (16)0.0127 (15)
C90.0264 (14)0.0370 (15)0.0395 (16)0.0010 (12)0.0236 (13)0.0011 (13)
C100.0376 (17)0.0505 (18)0.0401 (17)0.0081 (14)0.0246 (16)−0.0061 (14)
C110.0461 (19)0.069 (2)0.0340 (17)0.0097 (17)0.0205 (17)−0.0007 (16)
C120.0373 (17)0.062 (2)0.049 (2)0.0210 (16)0.0207 (17)0.0115 (17)
C130.065 (2)0.094 (3)0.067 (2)0.047 (2)0.049 (2)0.020 (2)
C140.057 (2)0.090 (3)0.051 (2)0.0372 (19)0.0432 (19)0.0196 (18)

Geometric parameters (Å, °)

Cu1—O11.9334 (16)C5—H50.9300
Cu1—N11.953 (2)C6—C71.371 (4)
Cu1—O1i1.9850 (17)C7—H70.9300
Cu1—Cl22.1934 (8)C8—C91.504 (4)
Cl1—C61.746 (3)C8—H8A0.9700
N1—C11.274 (3)C8—H8B0.9700
N1—C81.480 (3)C9—C101.369 (4)
O1—C31.341 (3)C9—C141.376 (4)
O1—Cu1i1.9850 (17)C10—C111.385 (4)
C1—C21.457 (3)C10—H100.9300
C1—H10.9300C11—C121.367 (4)
C2—C71.401 (3)C11—H110.9300
C2—C31.404 (3)C12—C131.367 (5)
C3—C41.396 (3)C12—H120.9300
C4—C51.378 (4)C13—C141.376 (5)
C4—H40.9300C13—H130.9300
C5—C61.379 (4)C14—H140.9300
O1—Cu1—N193.43 (8)C5—C6—Cl1119.8 (2)
O1—Cu1—O1i76.82 (8)C6—C7—C2119.7 (2)
N1—Cu1—O1i149.53 (9)C6—C7—H7120.2
O1—Cu1—Cl2149.90 (6)C2—C7—H7120.2
N1—Cu1—Cl2100.42 (6)N1—C8—C9113.7 (2)
O1i—Cu1—Cl2102.14 (6)N1—C8—H8A108.8
C1—N1—C8117.0 (2)C9—C8—H8A108.8
C1—N1—Cu1123.55 (16)N1—C8—H8B108.8
C8—N1—Cu1119.34 (17)C9—C8—H8B108.8
C3—O1—Cu1125.16 (14)H8A—C8—H8B107.7
C3—O1—Cu1i131.55 (14)C10—C9—C14118.0 (3)
Cu1—O1—Cu1i103.18 (8)C10—C9—C8123.6 (2)
N1—C1—C2126.9 (2)C14—C9—C8118.4 (2)
N1—C1—H1116.6C9—C10—C11121.1 (3)
C2—C1—H1116.6C9—C10—H10119.4
C7—C2—C3119.8 (2)C11—C10—H10119.4
C7—C2—C1116.0 (2)C12—C11—C10120.2 (3)
C3—C2—C1124.1 (2)C12—C11—H11119.9
O1—C3—C4120.0 (2)C10—C11—H11119.9
O1—C3—C2121.4 (2)C13—C12—C11119.0 (3)
C4—C3—C2118.6 (2)C13—C12—H12120.5
C5—C4—C3121.0 (2)C11—C12—H12120.5
C5—C4—H4119.5C12—C13—C14120.6 (3)
C3—C4—H4119.5C12—C13—H13119.7
C4—C5—C6119.7 (2)C14—C13—H13119.7
C4—C5—H5120.2C13—C14—C9121.0 (3)
C6—C5—H5120.2C13—C14—H14119.5
C7—C6—C5121.1 (2)C9—C14—H14119.5
C7—C6—Cl1119.0 (2)
O1—Cu1—N1—C111.7 (2)C1—C2—C3—C4175.0 (2)
O1i—Cu1—N1—C181.3 (3)O1—C3—C4—C5−179.9 (2)
Cl2—Cu1—N1—C1−141.5 (2)C2—C3—C4—C51.4 (4)
O1—Cu1—N1—C8−171.9 (2)C3—C4—C5—C60.3 (4)
O1i—Cu1—N1—C8−102.3 (2)C4—C5—C6—C7−0.7 (4)
Cl2—Cu1—N1—C834.9 (2)C4—C5—C6—Cl1−180.0 (2)
N1—Cu1—O1—C3−25.7 (2)C5—C6—C7—C2−0.7 (4)
O1i—Cu1—O1—C3−176.5 (2)Cl1—C6—C7—C2178.58 (19)
Cl2—Cu1—O1—C392.0 (2)C3—C2—C7—C62.4 (4)
N1—Cu1—O1—Cu1i150.78 (10)C1—C2—C7—C6−175.6 (2)
O1i—Cu1—O1—Cu1i0.0C1—N1—C8—C9−132.1 (3)
Cl2—Cu1—O1—Cu1i−91.53 (12)Cu1—N1—C8—C951.3 (3)
C8—N1—C1—C2−173.3 (2)N1—C8—C9—C1031.3 (4)
Cu1—N1—C1—C23.2 (4)N1—C8—C9—C14−150.8 (3)
N1—C1—C2—C7166.4 (3)C14—C9—C10—C110.7 (5)
N1—C1—C2—C3−11.5 (4)C8—C9—C10—C11178.7 (3)
Cu1—O1—C3—C4−154.0 (2)C9—C10—C11—C12−1.2 (5)
Cu1i—O1—C3—C430.6 (4)C10—C11—C12—C130.4 (5)
Cu1—O1—C3—C224.7 (3)C11—C12—C13—C140.9 (6)
Cu1i—O1—C3—C2−150.76 (19)C12—C13—C14—C9−1.3 (6)
C7—C2—C3—O1178.6 (2)C10—C9—C14—C130.5 (5)
C1—C2—C3—O1−3.6 (4)C8—C9—C14—C13−177.5 (3)
C7—C2—C3—C4−2.8 (4)

Symmetry codes: (i) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2176).

References

  • Bencini, A. & Mani, F. (1988). Inorg. Chim. Acta, 154, 215–219.
  • Jiang, Y.-M., Zeng, J.-L. & Yu, K.-B. (2004). Acta Cryst. C60, m543–m545. [PubMed]
  • Liu, S.-J. & Su, C.-C. (1996). Polyhedron, 15, 1141–1149.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART, SAINT and SADABS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography