PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m212–m213.
Published online 2007 December 18. doi:  10.1107/S1600536807066688
PMCID: PMC2915141

Tris[4-(2-pyridylmethyl­eneamino)phenol]iron(II) bis­(perchlorate)

Abstract

In the title compound, [Fe(C12H10N2O)3](ClO4)2, the metal center is coordinated by six N atoms from the three bidentate chelating ligands in a distorted octa­hedral coordination geometry, with overall formation of the meridional (OC-6-21) isomer. Inter­molecular O—H(...)O hydrogen bonds between the hydroxyl groups of the cation and the counter-anions form an infinite one-dimensional chain in the c-axis direction.

Related literature

For related literature, see: Cloete & Mapolie (2006 [triangle]); Osman (2006 [triangle]); Sharma & Dubey (1994 [triangle]); Thankarajan & Mohanan (1986 [triangle]); Dash et al. (1983 [triangle]); Dhar et al. (2005 [triangle]); Golcu et al. (2005 [triangle]); Lacroxin et al. (2004 [triangle]); Shaker et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m212-scheme1.jpg

Experimental

Crystal data

  • [Fe(C12H10N2O)3](ClO4)2
  • M r = 849.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m212-efi1.jpg
  • a = 16.201 (3) Å
  • b = 9.1222 (15) Å
  • c = 23.787 (4) Å
  • β = 91.089 (5)°
  • V = 3514.8 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.66 mm−1
  • T = 130 (2) K
  • 0.55 × 0.07 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.714, T max = 0.974
  • 20409 measured reflections
  • 7879 independent reflections
  • 4431 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.115
  • S = 1.01
  • 7879 reflections
  • 505 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 1999 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066688/wn2231sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066688/wn2231Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

M-DŞ gratefully acknowledges financial support from OMNIASIG SA Romania.

supplementary crystallographic information

Comment

A large number of Schiff bases and their complexes have been studied for their interesting and important properties, such as their ability to reversibly bind oxygen, their catalytic activity in the hydrogenation of olefins and their photochromic properties (Osman, 2006). The synthesis of new Schiff bases and their metal complexes are the subject of ongoing research (Golcu et al., 2005; Lacroxin et al., 2004; Dhar et al., 2005). Similar to the ligands 2,2'-bipyridine and 1,10-phenanthroline, Schiff bases derived from 2-pyridinecarboxaldehyde provide the π-acidic α,α'-diimine fragment for metal coordination.

Very little effort has been spent in the preparation of Fe(II) Schiff base complexes (Thankarajan & Mohanan, 1986; Sharma & Dubey, 1994), despite their importance as complexes containing a metal in a low and potentially unstable oxidation state, as well as involving relatively unstable ligands, the Schiff bases (Shaker et al., 2003). Such ligands are hydrolytically unstable but the metal ions stabilize the aldimine linkage to hydrolytic splitting (Dash et al., 1983).

In this context, the title complex of Fe(II) with 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) has been prepared and its crystal structure is reported here. The central Fe atom is coordinated by three ligand molecules through the nitrogen atoms in a bidentate manner. The coordination geometry is distorted octahedral. The complex crystallizes as the meridional isomer in the monoclinic centrosymmetric space group P21/c. The meridional isomer is associated with two different orientations of the bidentate ligands in a 2:1 distribution. These two different types of geometry are reflected in different dihedral angles between the aromatic and heteroaromatic rings. For the ligands which have the same orientation (N1···N2 and N3···N4 bidentate ligands) the dihedral angles are similar, viz. 36.72 (16) and 34.21 (16)°, respectively, whereas for the bidentate ligand N5···N6 with different orientation the angle is 50.30 (17)°. The Fe(II)—N(pyridine) distances are shorter than the Fe(II)—N(imine) bonds (see Table 1). Classical intermolecular O—H···O hydrogen bonds between the OH groups of the cation and the anions form an infinite one-dimensional chain in the c direction.

Experimental

Attempts to synthesize Fe(II) complexes with the Schiff base ligand 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) in a molar ratio M:L 1:1 or 1:2 resulted in the same crystalline complex [Fe(C12H10N2O)3](ClO4)2, independent of reactant stoichiometry. The ligand 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) was prepared following the procedure developed in the literature (Cloete & Mapolie, 2006). Stoichiometric amounts of Fe(ClO4)2.xH2O (0.255 g, 1 mmol) and 2-pyridinecarboxaldehyde(p-hydroxyphenylimine) (0.198 g, 1 mmol respectively 0.296 g, 2 mmol) were dissolved in acetonitrile (40 ml) and stirred under reflux to promote the complete formation of the purple complex, [Fe(C12H10N2O)3](ClO4)2. Single crystals suitable for X-ray diffraction were obtained by slow diffusion of diisopropyl ether into an acetonitrile solution of the complex at room temperature.

Refinement

H atoms were placed in calculated positions and refined using a riding model with C—H distances of 0.93 Å, O—H distances of 0.82 Å, Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Displacement ellipsoid plots (30% probability) of the cation. Hydrogen atoms and the anions have been omitted for clarity.
Fig. 2.
The packing of the structure in the unit cell. Hydrogen bonds are indicated by dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

[Fe(C12H10N2O)3](ClO4)2F000 = 1744
Mr = 849.41Dx = 1.605 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 16.201 (3) ÅCell parameters from 8096 reflections
b = 9.1222 (15) Åθ = 2.1–27.4º
c = 23.787 (4) ŵ = 0.66 mm1
β = 91.089 (5)ºT = 130 (2) K
V = 3514.8 (10) Å3Rod, dark brown
Z = 40.55 × 0.07 × 0.04 mm

Data collection

Bruker SMART APEX CCD diffractometer7879 independent reflections
Radiation source: fine-focus sealed tube4431 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.081
T = 130(2) Kθmax = 27.4º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→21
Tmin = 0.714, Tmax = 0.974k = −11→11
20409 measured reflectionsl = −26→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
7879 reflectionsΔρmax = 0.60 e Å3
505 parametersΔρmin = −0.53 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The values of Tmin and Tmax are 0.764276 and 1.000000 from SADABS.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.25204 (3)0.69147 (6)0.15599 (2)0.02052 (14)
O10.44356 (17)1.3193 (3)0.27185 (11)0.0430 (7)
H10.43091.35140.30270.065*
O20.30912 (16)0.2248 (3)−0.07599 (10)0.0376 (7)
H20.33840.1595−0.06280.056*
O30.03875 (16)1.2193 (3)0.01116 (10)0.0379 (7)
H30.02181.27350.03590.057*
N10.22735 (17)0.5285 (3)0.20764 (12)0.0243 (7)
N20.29799 (17)0.7776 (3)0.22739 (12)0.0230 (7)
N30.19351 (18)0.5951 (3)0.09126 (11)0.0221 (7)
N40.14110 (17)0.7711 (3)0.16764 (11)0.0210 (7)
N50.27866 (17)0.8410 (3)0.09666 (11)0.0211 (7)
N60.36340 (17)0.6253 (3)0.13568 (11)0.0199 (7)
C10.2528 (2)0.5509 (4)0.26149 (15)0.0238 (9)
C20.2939 (2)0.6898 (4)0.27008 (15)0.0255 (8)
H2A0.31650.71530.30490.031*
C30.3315 (2)0.9198 (4)0.23806 (14)0.0225 (8)
C40.3158 (2)0.9923 (4)0.28827 (14)0.0259 (9)
H40.28040.95020.31410.031*
C50.3519 (2)1.1253 (4)0.30015 (15)0.0288 (9)
H50.34121.17230.33390.035*
C60.4038 (2)1.1889 (4)0.26232 (15)0.0272 (9)
C70.4177 (2)1.1200 (4)0.21192 (15)0.0317 (10)
H70.45161.16430.18580.038*
C80.3822 (2)0.9875 (4)0.19971 (15)0.0277 (9)
H80.39220.94250.16540.033*
C90.2382 (2)0.4512 (4)0.30424 (15)0.0284 (9)
H90.25720.46950.34070.034*
C100.1950 (2)0.3248 (4)0.29190 (16)0.0335 (10)
H100.18540.25530.31960.040*
C110.1661 (2)0.3035 (4)0.23742 (16)0.0333 (10)
H110.13540.22070.22800.040*
C120.1839 (2)0.4077 (4)0.19731 (15)0.0282 (9)
H120.16420.39230.16080.034*
C130.2266 (2)0.5021 (4)0.04826 (14)0.0228 (8)
C140.2054 (2)0.5242 (4)−0.00785 (14)0.0278 (9)
H140.17140.6024−0.01800.033*
C150.2342 (2)0.4314 (4)−0.04842 (15)0.0323 (10)
H150.21980.4474−0.08600.039*
C160.2843 (2)0.3144 (4)−0.03397 (15)0.0290 (9)
C170.3091 (2)0.2942 (4)0.02191 (15)0.0250 (9)
H170.34530.21890.03170.030*
C180.2791 (2)0.3878 (4)0.06279 (15)0.0244 (9)
H180.29450.37360.10030.029*
C190.1181 (2)0.6377 (4)0.08495 (15)0.0248 (9)
H190.08540.60400.05510.030*
C200.0859 (2)0.7398 (4)0.12569 (14)0.0229 (8)
C210.1159 (2)0.8625 (4)0.20802 (14)0.0247 (9)
H210.15090.87990.23870.030*
C220.0397 (2)0.9321 (4)0.20587 (15)0.0280 (9)
H220.02450.99580.23440.034*
C23−0.0129 (2)0.9057 (4)0.16097 (16)0.0328 (10)
H23−0.06280.95590.15760.039*
C240.0089 (2)0.8037 (4)0.12084 (15)0.0304 (9)
H24−0.02720.77900.09150.037*
C250.2220 (2)0.9464 (4)0.07386 (14)0.0221 (8)
C260.1963 (2)0.9394 (4)0.01779 (14)0.0271 (9)
H260.22020.8713−0.00600.032*
C270.1365 (2)1.0312 (4)−0.00281 (15)0.0297 (9)
H270.12001.0261−0.04040.036*
C280.1004 (2)1.1321 (4)0.03266 (15)0.0260 (9)
C290.1265 (2)1.1410 (4)0.08820 (14)0.0238 (9)
H290.10291.20970.11190.029*
C300.1869 (2)1.0497 (4)0.10853 (15)0.0241 (9)
H300.20441.05700.14590.029*
C310.3439 (2)0.8096 (4)0.06834 (14)0.0248 (8)
H310.35750.86090.03600.030*
C320.3945 (2)0.6907 (4)0.08974 (14)0.0223 (8)
C330.4093 (2)0.5220 (4)0.16004 (15)0.0241 (9)
H330.39010.47800.19250.029*
C340.4844 (2)0.4767 (4)0.13958 (16)0.0304 (9)
H340.51460.40420.15820.036*
C350.5140 (2)0.5396 (4)0.09150 (17)0.0330 (10)
H350.56320.50790.07620.040*
C360.4691 (2)0.6504 (4)0.06662 (16)0.0306 (9)
H360.48840.69750.03480.037*
Cl10.56386 (6)0.08454 (11)0.08604 (4)0.0336 (3)
O40.59056 (18)−0.0018 (3)0.03976 (10)0.0498 (8)
O50.48010 (18)0.1187 (4)0.08003 (13)0.0798 (12)
O60.6107 (3)0.2155 (4)0.08746 (18)0.1029 (14)
O70.58053 (19)0.0088 (4)0.13652 (11)0.0648 (10)
Cl20.07519 (6)0.85572 (12)0.36151 (4)0.0384 (3)
O80.10983 (19)0.9829 (3)0.33517 (11)0.0603 (10)
O90.03283 (17)0.9033 (3)0.41089 (11)0.0498 (8)
O100.1390 (2)0.7602 (4)0.37764 (16)0.0819 (12)
O110.0186 (2)0.7834 (4)0.32467 (12)0.0663 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0234 (3)0.0188 (3)0.0193 (3)0.0015 (2)−0.0003 (2)−0.0005 (2)
O10.062 (2)0.0289 (17)0.0377 (16)−0.0113 (15)−0.0031 (14)−0.0074 (14)
O20.0576 (19)0.0300 (17)0.0254 (15)0.0163 (14)0.0023 (13)−0.0022 (12)
O30.0444 (17)0.0399 (18)0.0290 (15)0.0151 (14)−0.0073 (13)−0.0052 (13)
N10.0273 (17)0.0210 (18)0.0245 (17)0.0019 (14)−0.0037 (14)−0.0032 (14)
N20.0220 (16)0.0204 (19)0.0265 (17)0.0042 (14)−0.0002 (13)0.0000 (14)
N30.0285 (18)0.0171 (17)0.0209 (16)0.0005 (14)0.0035 (13)0.0002 (13)
N40.0256 (17)0.0206 (18)0.0167 (16)−0.0016 (14)0.0009 (13)0.0017 (13)
N50.0257 (17)0.0153 (17)0.0221 (16)−0.0029 (13)−0.0021 (14)−0.0002 (13)
N60.0227 (16)0.0181 (17)0.0189 (16)−0.0026 (14)−0.0018 (13)−0.0004 (13)
C10.020 (2)0.023 (2)0.027 (2)0.0055 (17)−0.0035 (16)0.0019 (18)
C20.029 (2)0.025 (2)0.022 (2)−0.0014 (18)−0.0028 (16)0.0033 (18)
C30.022 (2)0.019 (2)0.026 (2)0.0014 (17)−0.0037 (16)−0.0051 (17)
C40.030 (2)0.026 (2)0.022 (2)0.0002 (18)−0.0019 (17)0.0018 (17)
C50.033 (2)0.031 (2)0.022 (2)0.0036 (19)−0.0038 (18)−0.0052 (18)
C60.032 (2)0.015 (2)0.034 (2)0.0023 (19)−0.0095 (18)−0.0030 (19)
C70.044 (3)0.026 (2)0.025 (2)−0.008 (2)0.0053 (19)−0.0007 (18)
C80.033 (2)0.026 (2)0.025 (2)0.0032 (19)0.0020 (18)−0.0030 (18)
C90.030 (2)0.031 (2)0.024 (2)0.0003 (19)−0.0033 (17)0.0047 (18)
C100.037 (2)0.024 (2)0.039 (2)0.004 (2)0.000 (2)0.0086 (19)
C110.036 (2)0.022 (2)0.042 (2)−0.0021 (19)0.0037 (19)0.000 (2)
C120.035 (2)0.021 (2)0.029 (2)−0.0057 (19)−0.0014 (18)0.0003 (18)
C130.029 (2)0.015 (2)0.024 (2)−0.0001 (17)−0.0013 (17)−0.0008 (16)
C140.038 (2)0.021 (2)0.024 (2)0.0073 (19)−0.0034 (18)0.0003 (17)
C150.046 (3)0.034 (3)0.017 (2)0.011 (2)−0.0044 (18)−0.0031 (18)
C160.040 (2)0.023 (2)0.024 (2)0.005 (2)0.0053 (18)−0.0031 (18)
C170.026 (2)0.017 (2)0.031 (2)0.0009 (17)−0.0008 (17)0.0012 (18)
C180.033 (2)0.020 (2)0.020 (2)−0.0081 (18)−0.0031 (17)0.0005 (17)
C190.026 (2)0.023 (2)0.025 (2)−0.0071 (18)−0.0004 (17)0.0001 (17)
C200.026 (2)0.019 (2)0.024 (2)−0.0005 (17)0.0029 (17)0.0037 (16)
C210.031 (2)0.027 (2)0.0156 (19)0.0036 (18)0.0017 (16)0.0018 (17)
C220.032 (2)0.030 (2)0.022 (2)0.0020 (19)0.0089 (18)−0.0002 (18)
C230.026 (2)0.039 (3)0.034 (2)0.011 (2)0.0085 (19)0.007 (2)
C240.027 (2)0.039 (3)0.025 (2)0.001 (2)−0.0051 (17)0.000 (2)
C250.026 (2)0.014 (2)0.026 (2)−0.0007 (16)−0.0010 (17)0.0020 (16)
C260.037 (2)0.020 (2)0.024 (2)0.0028 (18)0.0030 (18)0.0002 (17)
C270.040 (2)0.026 (2)0.023 (2)0.0027 (19)−0.0034 (18)−0.0015 (18)
C280.027 (2)0.021 (2)0.029 (2)0.0016 (18)−0.0024 (17)0.0016 (18)
C290.027 (2)0.018 (2)0.027 (2)−0.0040 (17)0.0034 (17)−0.0047 (17)
C300.027 (2)0.021 (2)0.024 (2)−0.0014 (17)−0.0031 (17)−0.0017 (17)
C310.029 (2)0.024 (2)0.0212 (19)−0.0061 (19)0.0044 (17)−0.0025 (18)
C320.0245 (19)0.017 (2)0.025 (2)0.0007 (17)−0.0034 (16)−0.0037 (17)
C330.026 (2)0.019 (2)0.027 (2)0.0009 (17)−0.0038 (17)0.0027 (17)
C340.027 (2)0.019 (2)0.045 (3)0.0058 (18)−0.0073 (19)0.0015 (19)
C350.025 (2)0.024 (2)0.051 (3)0.0050 (19)0.0047 (19)−0.004 (2)
C360.031 (2)0.029 (2)0.032 (2)−0.0013 (19)0.0080 (18)−0.0022 (19)
Cl10.0392 (6)0.0342 (6)0.0273 (5)0.0127 (5)0.0016 (4)−0.0004 (5)
O40.078 (2)0.0455 (19)0.0267 (16)0.0280 (17)0.0097 (15)−0.0017 (14)
O50.046 (2)0.139 (4)0.054 (2)0.047 (2)−0.0139 (17)−0.024 (2)
O60.124 (4)0.036 (2)0.149 (4)−0.007 (2)0.015 (3)−0.023 (2)
O70.074 (2)0.089 (3)0.0317 (18)0.036 (2)0.0095 (16)0.0198 (18)
Cl20.0365 (6)0.0503 (7)0.0283 (6)−0.0131 (5)−0.0019 (5)−0.0016 (5)
O80.078 (2)0.069 (2)0.0346 (17)−0.0477 (19)0.0098 (16)−0.0038 (16)
O90.056 (2)0.048 (2)0.0459 (18)−0.0090 (16)0.0241 (16)0.0002 (15)
O100.064 (2)0.084 (3)0.097 (3)0.037 (2)−0.015 (2)−0.024 (2)
O110.077 (2)0.083 (3)0.0391 (18)−0.052 (2)−0.0175 (16)0.0084 (17)

Geometric parameters (Å, °)

Fe1—N41.963 (3)C14—C151.372 (5)
Fe1—N61.971 (3)C14—H140.9300
Fe1—N11.974 (3)C15—C161.380 (5)
Fe1—N31.997 (3)C15—H150.9300
Fe1—N22.002 (3)C16—C171.394 (5)
Fe1—N52.015 (3)C17—C181.388 (5)
O1—C61.370 (4)C17—H170.9300
O1—H10.8200C18—H180.9300
O2—C161.358 (4)C19—C201.449 (5)
O2—H20.8200C19—H190.9300
O3—C281.369 (4)C20—C241.378 (5)
O3—H30.8200C21—C221.388 (5)
N1—C121.328 (4)C21—H210.9300
N1—C11.354 (4)C22—C231.375 (5)
N2—C21.296 (4)C22—H220.9300
N2—C31.426 (4)C23—C241.384 (5)
N3—C191.288 (4)C23—H230.9300
N3—C131.440 (4)C24—H240.9300
N4—C211.341 (4)C25—C301.382 (5)
N4—C201.358 (4)C25—C261.391 (5)
N5—C311.296 (4)C26—C271.365 (5)
N5—C251.429 (4)C26—H260.9300
N6—C331.327 (4)C27—C281.385 (5)
N6—C321.351 (4)C27—H270.9300
C1—C91.388 (5)C28—C291.382 (5)
C1—C21.444 (5)C29—C301.366 (5)
C2—H2A0.9300C29—H290.9300
C3—C81.385 (5)C30—H300.9300
C3—C41.393 (5)C31—C321.446 (5)
C4—C51.374 (5)C31—H310.9300
C4—H40.9300C32—C361.387 (5)
C5—C61.371 (5)C33—C341.382 (5)
C5—H50.9300C33—H330.9300
C6—C71.376 (5)C34—C351.374 (5)
C7—C81.368 (5)C34—H340.9300
C7—H70.9300C35—C361.372 (5)
C8—H80.9300C35—H350.9300
C9—C101.378 (5)C36—H360.9300
C9—H90.9300Cl1—O51.397 (3)
C10—C111.383 (5)Cl1—O71.407 (3)
C10—H100.9300Cl1—O61.416 (4)
C11—C121.381 (5)Cl1—O41.427 (3)
C11—H110.9300Cl2—O101.400 (3)
C12—H120.9300Cl2—O111.418 (3)
C13—C181.385 (5)Cl2—O81.438 (3)
C13—C141.387 (5)Cl2—O91.439 (3)
N4—Fe1—N6173.00 (12)C14—C15—C16120.6 (3)
N4—Fe1—N189.66 (11)C14—C15—H15119.7
N6—Fe1—N196.85 (12)C16—C15—H15119.7
N4—Fe1—N381.32 (12)O2—C16—C15117.6 (3)
N6—Fe1—N395.72 (11)O2—C16—C17122.6 (3)
N1—Fe1—N392.83 (12)C15—C16—C17119.8 (3)
N4—Fe1—N293.54 (11)C18—C17—C16119.2 (3)
N6—Fe1—N290.05 (11)C18—C17—H17120.4
N1—Fe1—N281.04 (12)C16—C17—H17120.4
N3—Fe1—N2172.06 (12)C13—C18—C17120.6 (3)
N4—Fe1—N593.27 (11)C13—C18—H18119.7
N6—Fe1—N580.00 (12)C17—C18—H18119.7
N1—Fe1—N5173.71 (12)N3—C19—C20118.0 (3)
N3—Fe1—N582.12 (11)N3—C19—H19121.0
N2—Fe1—N5104.31 (12)C20—C19—H19121.0
C6—O1—H1109.5N4—C20—C24123.7 (3)
C16—O2—H2109.5N4—C20—C19112.7 (3)
C28—O3—H3109.5C24—C20—C19123.6 (3)
C12—N1—C1116.8 (3)N4—C21—C22122.7 (3)
C12—N1—Fe1128.5 (2)N4—C21—H21118.6
C1—N1—Fe1114.4 (2)C22—C21—H21118.6
C2—N2—C3116.6 (3)C23—C22—C21119.1 (3)
C2—N2—Fe1113.5 (2)C23—C22—H22120.4
C3—N2—Fe1129.9 (2)C21—C22—H22120.4
C19—N3—C13117.4 (3)C22—C23—C24119.3 (3)
C19—N3—Fe1113.1 (2)C22—C23—H23120.3
C13—N3—Fe1129.0 (2)C24—C23—H23120.3
C21—N4—C20116.8 (3)C20—C24—C23118.0 (3)
C21—N4—Fe1128.5 (2)C20—C24—H24121.0
C20—N4—Fe1114.3 (2)C23—C24—H24121.0
C31—N5—C25118.4 (3)C30—C25—C26118.9 (3)
C31—N5—Fe1113.7 (2)C30—C25—N5120.1 (3)
C25—N5—Fe1125.2 (2)C26—C25—N5120.8 (3)
C33—N6—C32116.9 (3)C27—C26—C25120.9 (3)
C33—N6—Fe1128.2 (2)C27—C26—H26119.5
C32—N6—Fe1114.9 (2)C25—C26—H26119.5
N1—C1—C9122.8 (3)C26—C27—C28119.6 (3)
N1—C1—C2113.4 (3)C26—C27—H27120.2
C9—C1—C2123.8 (3)C28—C27—H27120.2
N2—C2—C1117.5 (3)O3—C28—C29122.1 (3)
N2—C2—H2A121.2O3—C28—C27118.2 (3)
C1—C2—H2A121.2C29—C28—C27119.8 (3)
C8—C3—C4118.2 (3)C30—C29—C28120.4 (3)
C8—C3—N2121.1 (3)C30—C29—H29119.8
C4—C3—N2120.6 (3)C28—C29—H29119.8
C5—C4—C3120.8 (4)C29—C30—C25120.3 (3)
C5—C4—H4119.6C29—C30—H30119.8
C3—C4—H4119.6C25—C30—H30119.8
C6—C5—C4120.1 (4)N5—C31—C32116.4 (3)
C6—C5—H5119.9N5—C31—H31121.8
C4—C5—H5119.9C32—C31—H31121.8
O1—C6—C5123.4 (3)N6—C32—C36123.0 (3)
O1—C6—C7117.2 (3)N6—C32—C31113.5 (3)
C5—C6—C7119.4 (4)C36—C32—C31123.5 (3)
C8—C7—C6120.9 (4)N6—C33—C34123.3 (3)
C8—C7—H7119.5N6—C33—H33118.4
C6—C7—H7119.5C34—C33—H33118.4
C7—C8—C3120.4 (3)C35—C34—C33119.4 (4)
C7—C8—H8119.8C35—C34—H34120.3
C3—C8—H8119.8C33—C34—H34120.3
C10—C9—C1119.0 (3)C36—C35—C34118.5 (4)
C10—C9—H9120.5C36—C35—H35120.8
C1—C9—H9120.5C34—C35—H35120.8
C9—C10—C11118.6 (4)C35—C36—C32118.9 (4)
C9—C10—H10120.7C35—C36—H36120.6
C11—C10—H10120.7C32—C36—H36120.6
C12—C11—C10118.7 (4)O5—Cl1—O7111.5 (2)
C12—C11—H11120.7O5—Cl1—O6109.5 (2)
C10—C11—H11120.7O7—Cl1—O6107.4 (2)
N1—C12—C11124.1 (4)O5—Cl1—O4110.62 (19)
N1—C12—H12118.0O7—Cl1—O4109.36 (17)
C11—C12—H12118.0O6—Cl1—O4108.3 (2)
C18—C13—C14119.3 (3)O10—Cl2—O11110.2 (2)
C18—C13—N3120.1 (3)O10—Cl2—O8109.2 (2)
C14—C13—N3120.6 (3)O11—Cl2—O8111.05 (18)
C15—C14—C13120.4 (3)O10—Cl2—O9109.0 (2)
C15—C14—H14119.8O11—Cl2—O9109.40 (19)
C13—C14—H14119.8O8—Cl2—O9107.96 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.822.052.815 (4)155
O2—H2···O4ii0.821.922.733 (4)174
O3—H3···O9iii0.821.962.772 (4)172

Symmetry codes: (i) −x+1, y+3/2, −z+1/2; (ii) −x+1, −y, −z; (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2231).

References

  • Bruker (1999). SAINT-Plus Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SMART Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cloete, J. & Mapolie, S. F. (2006). J. Mol. Catal. A, Chem.243, 221–225.
  • Dash, A. C., Dash, B., Mahapatra, P. K. & Patra, M. (1983). J. Chem. Soc. Dalton Trans. pp. 1503–1509.
  • Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Inorg. Chim. Acta, 358, 2437–2444.
  • Golcu, A., Tumer, M., Demicell, H. & Wheatley, R. C. (2005). Inorg. Chim. Acta, 358, 1785–1797.
  • Lacroxin, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.
  • Osman, A. H. (2006). Transition Met. Chem., 31, 35–41.
  • Shaker, A., M., Awad, A. M. & Nassr, L. A. E. (2003). Synth. React. Inorg. Met.-Org. Chem.33, 103–117.
  • Sharma, P. K. & Dubey, S. N. (1994). Indian J. Chem. Sect. A, 33, 1113–1115.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Thankarajan, N. & Mohanan, K. J. (1986). J. Ind. Chem. Soc.LXIII, 861–864.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography