PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m204.
Published online 2007 December 18. doi:  10.1107/S1600536807066512
PMCID: PMC2915134

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2012 July 01; 68(Pt 7): e14    See also: PMC Retraction Policy

μ-Oxido-bis­{chlorido[tris­(2-pyridylmethyl)amine]manganese(III)} bis­(hexa­fluorido­phosphate)

Abstract

In the title compound, [Mn2O(C18H18ClN4)2](PF6)2, the Mn atom is chelated by a tetra­dentate ligand via four N atoms, and further bonded to one chloride ion and one bridging oxide, to give a centrosymmetric cation and distorted octa­hedral coordination geometry.

Related literature

For related literature, see: Scapin et al. (1997 [triangle]); Okabe et al. (2000 [triangle]); Serre et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m204-scheme1.jpg

Experimental

Crystal data

  • [Mn2O(C18H18ClN4)2](PF6)2
  • M r = 1067.45
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m204-efi1.jpg
  • a = 8.5517 (12) Å
  • b = 11.3128 (18) Å
  • c = 12.914 (2) Å
  • α = 115.51 (2)°
  • β = 107.44 (2)°
  • γ = 91.49 (2)°
  • V = 1058.1 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 293 (2) K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.788, T max = 0.856
  • 9180 measured reflections
  • 4125 independent reflections
  • 3801 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.076
  • S = 1.00
  • 4125 reflections
  • 287 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066512/cf2174sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066512/cf2174Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Liaocheng University for financial support and Professor Jianmin Dou for his help.

supplementary crystallographic information

Comment

In recent years, many symmetrical polypyridine ligands and their coordination complexes have been synthesized (Scapin et al., 1997; Okabe et al., 2000; Serre et al., 2005). In this paper, we report the structure of the title compound, (I), containing an unsymmetrical polypyridine ligand.

As shown in Fig. 1, the Mn atom is chelated by the tetradentate ligand via four N atoms, and further bonded to one chloride ion and one bridging oxide, to give a centrosymmetric cation and distorted octahedral coordination geometry.

Experimental

A mixture of manganese(III) acetate (1 mmol) and tris(2-pyridylmethyl)amine (1 mmol) in 20 ml me thanol was refluxed for two hours. The cooled solution was filtered and the filtrate allowed to evaporate at room temperature. Two days later, pink blocks of (I) were obtained with a yield of 30%. Anal. Calc. for C36H36Cl2F12Mn2N8OP2: C 40.48, H 3.37, N 10.50%; Found: C 40.42, H 3.38, N 10.44%.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

[Mn2O(C18H18Cl1N4)2](PF6)2Z = 1
Mr = 1067.45F000 = 538
Triclinic, P1Dx = 1.675 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.5517 (12) ÅCell parameters from 4125 reflections
b = 11.3128 (18) Åθ = 3.0–26.0º
c = 12.914 (2) ŵ = 0.89 mm1
α = 115.51 (2)ºT = 293 (2) K
β = 107.44 (2)ºBlock, pink
γ = 91.49 (2)º0.28 × 0.22 × 0.18 mm
V = 1058.1 (3) Å3

Data collection

Bruker APEXII CCD diffractometer4125 independent reflections
Radiation source: fine-focus sealed tube3801 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −8→10
Tmin = 0.788, Tmax = 0.856k = −13→13
9180 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029  w = 1/[σ2(Fo2) + (0.0355P)2 + 0.508P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.27 e Å3
4125 reflectionsΔρmin = −0.31 e Å3
287 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0273 (16)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.03744 (3)0.34680 (2)0.39271 (2)0.0591 (3)
C160.9137 (3)0.5294 (2)0.15470 (19)0.0579 (6)
H160.81440.54730.11470.070*
C151.0631 (4)0.5736 (2)0.1515 (2)0.0698 (7)
H151.06560.62400.11090.084*
C120.7465 (3)0.1753 (2)0.14497 (19)0.0547 (5)
H12A0.74510.20110.08220.066*
H12B0.63700.12550.12120.066*
C141.2072 (4)0.5437 (3)0.2077 (2)0.0693 (7)
H141.30800.57230.20480.083*
C131.2008 (3)0.4705 (2)0.2687 (2)0.0586 (5)
H131.29890.44970.30700.070*
C90.9549 (3)−0.1237 (2)0.0608 (2)0.0591 (6)
H90.9333−0.21160.00070.071*
C71.1344 (3)0.0604 (2)0.2403 (2)0.0506 (5)
H71.23760.09590.30260.061*
C100.8352 (3)−0.0448 (2)0.05877 (19)0.0503 (5)
H100.7312−0.0789−0.00270.060*
C81.1067 (3)−0.0700 (2)0.1531 (2)0.0589 (6)
H81.1897−0.12110.15670.071*
C60.6719 (2)0.2876 (2)0.33136 (19)0.0473 (5)
H6A0.56320.23590.27400.057*
H6B0.65640.37600.38210.057*
C30.7291 (3)0.1172 (2)0.5339 (2)0.0583 (5)
H30.66600.07770.56190.070*
C10.9874 (2)0.18989 (19)0.53077 (17)0.0432 (4)
H11.10280.19890.55750.052*
C170.9146 (3)0.45733 (19)0.21901 (16)0.0442 (4)
C20.8988 (3)0.1304 (2)0.57405 (19)0.0509 (5)
H20.95300.09980.62920.061*
C40.6514 (3)0.1631 (2)0.4512 (2)0.0528 (5)
H40.53590.15360.42270.063*
C180.7604 (3)0.41495 (19)0.23735 (18)0.0450 (4)
H18A0.74280.48830.30540.054*
H18B0.66410.39180.16470.054*
C50.7463 (2)0.22291 (18)0.41146 (17)0.0400 (4)
C110.8713 (2)0.08589 (18)0.14917 (16)0.0398 (4)
Cl11.31393 (6)0.35086 (5)0.48444 (5)0.05319 (15)
F30.5826 (2)0.6606 (2)0.1912 (2)0.1062 (6)
F50.6040 (2)0.71991 (18)0.04862 (16)0.0904 (5)
F20.4876 (2)0.84879 (19)0.27957 (14)0.0865 (5)
F10.73275 (18)0.8610 (2)0.24889 (16)0.0976 (6)
F60.5112 (2)0.90781 (15)0.13872 (16)0.0796 (4)
F40.36039 (17)0.71075 (14)0.08069 (13)0.0705 (4)
N31.0566 (2)0.42831 (16)0.27464 (15)0.0455 (4)
N10.77789 (18)0.29832 (15)0.26229 (14)0.0395 (3)
N41.01895 (19)0.13923 (15)0.23967 (14)0.0415 (3)
N20.91299 (18)0.23567 (15)0.45101 (14)0.0386 (3)
O11.00000.50000.50000.0399 (4)
P10.54877 (7)0.78428 (6)0.16552 (5)0.05074 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0639 (6)0.0610 (6)0.0547 (6)0.0008 (4)0.0176 (5)−0.0068 (4)
C160.0825 (17)0.0485 (11)0.0445 (11)0.0145 (11)0.0199 (11)0.0241 (9)
C150.109 (2)0.0528 (13)0.0546 (13)0.0012 (13)0.0329 (14)0.0282 (11)
C120.0490 (12)0.0473 (11)0.0438 (11)0.0091 (9)−0.0021 (9)0.0119 (9)
C140.0823 (18)0.0680 (15)0.0664 (15)−0.0023 (13)0.0354 (14)0.0328 (13)
C130.0575 (13)0.0637 (13)0.0599 (13)0.0039 (10)0.0251 (11)0.0302 (11)
C90.0717 (15)0.0427 (11)0.0615 (13)0.0130 (10)0.0313 (12)0.0171 (10)
C70.0432 (11)0.0545 (11)0.0568 (12)0.0165 (9)0.0196 (9)0.0259 (10)
C100.0524 (12)0.0457 (10)0.0480 (11)0.0023 (9)0.0171 (9)0.0179 (9)
C80.0620 (14)0.0535 (12)0.0700 (14)0.0251 (10)0.0329 (12)0.0285 (11)
C60.0285 (9)0.0554 (11)0.0601 (12)0.0089 (8)0.0103 (8)0.0316 (10)
C30.0582 (13)0.0635 (13)0.0647 (14)0.0047 (10)0.0273 (11)0.0360 (11)
C10.0405 (10)0.0443 (10)0.0450 (10)0.0095 (8)0.0116 (8)0.0226 (8)
C170.0552 (12)0.0401 (9)0.0348 (9)0.0102 (8)0.0153 (8)0.0152 (8)
C20.0555 (12)0.0529 (11)0.0510 (11)0.0101 (9)0.0184 (9)0.0297 (10)
C40.0355 (10)0.0582 (12)0.0680 (13)0.0054 (9)0.0189 (9)0.0314 (11)
C180.0469 (11)0.0461 (10)0.0402 (10)0.0158 (8)0.0092 (8)0.0218 (8)
C50.0315 (9)0.0392 (9)0.0446 (10)0.0053 (7)0.0113 (7)0.0164 (8)
C110.0410 (10)0.0412 (9)0.0388 (9)0.0051 (7)0.0143 (7)0.0197 (8)
Cl10.0309 (2)0.0587 (3)0.0585 (3)0.0126 (2)0.0094 (2)0.0207 (2)
F30.0981 (14)0.1209 (15)0.1660 (19)0.0536 (12)0.0649 (13)0.1092 (15)
F50.0931 (12)0.0951 (12)0.0853 (11)0.0077 (9)0.0564 (10)0.0269 (9)
F20.0790 (11)0.1126 (13)0.0617 (9)0.0061 (9)0.0342 (8)0.0286 (9)
F10.0443 (8)0.1515 (17)0.0847 (11)−0.0079 (9)0.0016 (7)0.0586 (11)
F60.0760 (10)0.0695 (9)0.0981 (11)0.0058 (7)0.0193 (8)0.0500 (9)
F40.0522 (8)0.0690 (8)0.0724 (9)−0.0055 (6)0.0123 (7)0.0238 (7)
N30.0483 (9)0.0479 (9)0.0439 (9)0.0075 (7)0.0187 (7)0.0225 (7)
N10.0332 (8)0.0421 (8)0.0402 (8)0.0094 (6)0.0078 (6)0.0193 (7)
N40.0391 (8)0.0433 (8)0.0436 (8)0.0111 (6)0.0153 (7)0.0205 (7)
N20.0325 (8)0.0400 (8)0.0429 (8)0.0076 (6)0.0113 (6)0.0197 (7)
O10.0350 (9)0.0409 (9)0.0411 (9)0.0076 (7)0.0104 (7)0.0185 (8)
P10.0402 (3)0.0644 (3)0.0516 (3)0.0071 (2)0.0144 (2)0.0312 (3)

Geometric parameters (Å, °)

Mn1—O11.8034 (5)C6—N11.485 (3)
Mn1—N22.1227 (16)C6—C51.514 (3)
Mn1—N32.1341 (17)C6—H6A0.970
Mn1—N12.2280 (16)C6—H6B0.970
Mn1—N42.2893 (17)C3—C21.367 (3)
Mn1—Cl12.2944 (7)C3—C41.386 (3)
C16—C151.379 (4)C3—H30.930
C16—C171.390 (3)C1—N21.348 (2)
C16—H160.930C1—C21.375 (3)
C15—C141.361 (4)C1—H10.930
C15—H150.930C17—N31.341 (3)
C12—N11.491 (2)C17—C181.509 (3)
C12—C111.495 (3)C2—H20.930
C12—H12A0.970C4—C51.378 (3)
C12—H12B0.970C4—H40.930
C14—C131.377 (3)C18—N11.488 (2)
C14—H140.930C18—H18A0.970
C13—N31.346 (3)C18—H18B0.970
C13—H130.930C5—N21.343 (2)
C9—C81.372 (3)C11—N41.339 (2)
C9—C101.377 (3)F3—P11.5854 (18)
C9—H90.930F5—P11.5906 (16)
C7—N41.348 (3)F2—P11.5908 (16)
C7—C81.375 (3)F1—P11.5799 (16)
C7—H70.930F6—P11.5966 (16)
C10—C111.385 (3)F4—P11.6046 (15)
C10—H100.930O1—Mn1i1.8034 (5)
C8—H80.930
O1—Mn1—N290.82 (4)N2—C1—H1118.8
O1—Mn1—N392.87 (5)C2—C1—H1118.8
N2—Mn1—N3154.78 (6)N3—C17—C16121.2 (2)
O1—Mn1—N191.90 (5)N3—C17—C18116.09 (17)
N2—Mn1—N178.71 (6)C16—C17—C18122.6 (2)
N3—Mn1—N176.24 (6)C1—C2—C3118.3 (2)
O1—Mn1—N4166.67 (4)C1—C2—H2120.8
N2—Mn1—N482.20 (6)C3—C2—H2120.8
N3—Mn1—N488.79 (6)C5—C4—C3119.6 (2)
N1—Mn1—N475.64 (6)C5—C4—H4120.2
O1—Mn1—Cl1102.88 (3)C3—C4—H4120.2
N2—Mn1—Cl1103.45 (5)N1—C18—C17110.49 (15)
N3—Mn1—Cl1100.01 (5)N1—C18—H18A109.6
N1—Mn1—Cl1164.97 (4)C17—C18—H18A109.6
N4—Mn1—Cl189.83 (5)N1—C18—H18B109.6
C15—C16—C17118.5 (2)C17—C18—H18B109.6
C15—C16—H16120.7H18A—C18—H18B108.1
C17—C16—H16120.7N2—C5—C4120.59 (18)
C16—C15—C14120.3 (2)N2—C5—C6116.63 (17)
C16—C15—H15119.9C4—C5—C6122.56 (17)
C14—C15—H15119.9N4—C11—C10122.48 (18)
N1—C12—C11114.72 (15)N4—C11—C12117.29 (16)
N1—C12—H12A108.6C10—C11—C12120.17 (18)
C11—C12—H12A108.6C17—N3—C13119.35 (19)
N1—C12—H12B108.6C17—N3—Mn1114.96 (13)
C11—C12—H12B108.6C13—N3—Mn1124.77 (15)
H12A—C12—H12B107.6C12—N1—C6112.81 (17)
C13—C14—C15118.8 (2)C12—N1—C18109.20 (15)
C13—C14—H14120.6C6—N1—C18112.67 (15)
C15—C14—H14120.6C12—N1—Mn1113.32 (12)
N3—C13—C14121.8 (2)C6—N1—Mn1104.27 (11)
N3—C13—H13119.1C18—N1—Mn1104.25 (11)
C14—C13—H13119.1C7—N4—C11117.38 (17)
C8—C9—C10118.7 (2)C7—N4—Mn1125.96 (14)
C8—C9—H9120.7C11—N4—Mn1116.09 (12)
C10—C9—H9120.7C5—N2—C1119.34 (17)
N4—C7—C8123.0 (2)C5—N2—Mn1114.73 (12)
N4—C7—H7118.5C1—N2—Mn1125.63 (13)
C8—C7—H7118.5Mn1i—O1—Mn1180
C11—C10—C9119.3 (2)F3—P1—F191.72 (12)
C11—C10—H10120.3F3—P1—F290.05 (11)
C9—C10—H10120.3F1—P1—F290.83 (10)
C9—C8—C7119.1 (2)F3—P1—F6179.00 (10)
C9—C8—H8120.4F1—P1—F689.26 (10)
C7—C8—H8120.4F2—P1—F689.71 (10)
N1—C6—C5112.64 (15)F3—P1—F590.98 (11)
N1—C6—H6A109.1F1—P1—F590.78 (10)
C5—C6—H6A109.1F2—P1—F5178.06 (10)
N1—C6—H6B109.1F6—P1—F589.23 (10)
C5—C6—H6B109.1F3—P1—F490.10 (11)
H6A—C6—H6B107.8F1—P1—F4178.14 (11)
C2—C3—C4119.6 (2)F2—P1—F488.82 (9)
C2—C3—H3120.2F6—P1—F488.92 (9)
C4—C3—H3120.2F5—P1—F489.54 (9)
N2—C1—C2122.44 (19)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2174).

References

  • Bruker (2001). SADABS, SAINT-Plus and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417. [PubMed]
  • Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088. [PubMed]
  • Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem.44, 654–658. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography