PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m202.
Published online 2007 December 18. doi:  10.1107/S1600536807054943
PMCID: PMC2915132

Bis[2-(benzyl­imino­meth­yl)-4-chloro­phenolato-κ2 N,O]nickel(II)

Abstract

In the mononuclear centrosymmetric title compound, [Ni(C14H11ClNO)2], the NiII atom, lying on a center of symmetry, is four-coordinated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted square-planar environment. The dihedral angle between the two aromatic rings of the ligand is 72.0 (2)°. No significant hydrogen bonding or π–π stacking inter­actions are observed.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For related literature, see: Christensen et al. (1997 [triangle]); Costes et al. (2005 [triangle]); Hu et al. (2005 [triangle]); Liu et al. (2006 [triangle]); Wallis & Cummings (1974 [triangle]); Yu (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m202-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H11ClNO)2]
  • M r = 548.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m202-efi1.jpg
  • a = 13.6785 (17) Å
  • b = 10.5986 (14) Å
  • c = 8.6560 (13) Å
  • β = 107.529 (2)°
  • V = 1196.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 298 (2) K
  • 0.56 × 0.44 × 0.32 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.587, T max = 0.727
  • 5718 measured reflections
  • 2110 independent reflections
  • 1506 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.124
  • S = 1.08
  • 2110 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807054943/ci2496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807054943/ci2496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the Phytochemistry Key Laboratory of Shaanxi province (grant No. 02js40) is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, we have reported a Schiff base nickel(II) complex (Hu et al., 2005). Owing to the nickel complexes derived from Schiff base ligands possess interesting structures and wide applications (Costes et al., 2005; Wallis & Cummings, 1974; Christensen et al., 1997; Liu et al., 2006); Yu, 2006), we report here the crystal structure of a new Schiff base nickel(II) complex, title compound, (I),

Compound (I) is a mononuclear centrosymmetric NiII complex (Fig. 1) The Ni atom, lying on the center of symmetry, is four-coordainated by two O atoms and two N atoms from two Schiff base ligands, forming a slightly distorted square-planar environment (Table 1). The bond lengths and angles of the ligands show normal values (Allen et al., 1987). The dihedral angle between the two aromatic rings of the ligand is 72.0 (2)°. No significant hydrogen bonding or π-π stacking interactions are observed.

Experimental

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg), Ni(NO3)2.6H2O (0.1 mmol, 29.0 mg) and benzylamine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of compound (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 61.30, H 4.0%; calculated for Ni(C14H11ClO)2: C 61.34, H 4.01%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Unlabelled atoms are related to other labelled atoms by the symmetry operation (-x, 1 - y, -z).
Fig. 2.
The crystal packing of (I), viewed along the c axis.

Crystal data

[Ni(C14H11ClNO)2]F000 = 564
Mr = 548.09Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1825 reflections
a = 13.6785 (17) Åθ = 2.5–25.2º
b = 10.5986 (14) ŵ = 1.06 mm1
c = 8.6560 (13) ÅT = 298 (2) K
β = 107.529 (2)ºRhombus, green
V = 1196.6 (3) Å30.56 × 0.44 × 0.32 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer2110 independent reflections
Radiation source: fine-focus sealed tube1506 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −16→12
Tmin = 0.587, Tmax = 0.727k = −12→8
5718 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.124  w = 1/[σ2(Fo2) + (0.057P)2 + 0.6708P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2110 reflectionsΔρmax = 0.53 e Å3
160 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.50000.00000.0329 (2)
Cl10.48272 (9)0.77502 (16)0.44350 (18)0.0919 (6)
N10.0104 (2)0.6504 (3)0.1288 (3)0.0316 (7)
O10.13607 (19)0.4664 (3)0.0829 (3)0.0472 (7)
C10.0949 (3)0.7006 (4)0.2141 (4)0.0354 (8)
H10.08990.77370.27050.043*
C20.1963 (3)0.6549 (4)0.2309 (4)0.0359 (9)
C30.2107 (3)0.5393 (4)0.1629 (4)0.0365 (9)
C40.3123 (3)0.4982 (4)0.1878 (5)0.0467 (10)
H40.32400.42080.14610.056*
C50.3939 (3)0.5699 (5)0.2720 (5)0.0528 (11)
H50.46030.54180.28550.063*
C60.3779 (3)0.6840 (5)0.3372 (5)0.0520 (11)
C70.2809 (3)0.7283 (4)0.3197 (5)0.0451 (10)
H70.27100.80480.36530.054*
C8−0.0831 (3)0.7179 (4)0.1351 (4)0.0369 (9)
H8A−0.12540.73530.02530.044*
H8B−0.06330.79820.18930.044*
C9−0.1461 (2)0.6457 (3)0.2219 (4)0.0316 (8)
C10−0.1084 (3)0.5490 (4)0.3262 (4)0.0393 (9)
H10−0.04110.52250.34380.047*
C11−0.1688 (3)0.4897 (4)0.4064 (5)0.0469 (10)
H11−0.14220.42330.47670.056*
C12−0.2678 (3)0.5281 (4)0.3827 (5)0.0533 (12)
H12−0.30870.48780.43610.064*
C13−0.3059 (3)0.6264 (5)0.2799 (5)0.0553 (12)
H13−0.37250.65440.26510.066*
C14−0.2457 (3)0.6839 (4)0.1983 (5)0.0458 (10)
H14−0.27270.74930.12650.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0295 (4)0.0348 (4)0.0367 (4)−0.0008 (3)0.0133 (3)−0.0002 (3)
Cl10.0415 (7)0.1240 (14)0.1083 (11)−0.0314 (7)0.0197 (7)−0.0503 (10)
N10.0291 (15)0.0328 (17)0.0363 (16)0.0014 (13)0.0152 (13)0.0075 (13)
O10.0307 (14)0.0475 (19)0.0590 (17)0.0032 (11)0.0070 (13)−0.0124 (13)
C10.040 (2)0.031 (2)0.040 (2)−0.0020 (16)0.0191 (17)0.0023 (16)
C20.0311 (19)0.043 (2)0.035 (2)−0.0034 (17)0.0123 (15)0.0036 (18)
C30.033 (2)0.045 (2)0.035 (2)−0.0018 (16)0.0137 (17)0.0024 (17)
C40.035 (2)0.053 (3)0.054 (2)0.0008 (19)0.0156 (18)−0.010 (2)
C50.031 (2)0.069 (3)0.059 (3)−0.001 (2)0.0156 (19)−0.005 (2)
C60.034 (2)0.073 (3)0.050 (2)−0.014 (2)0.0137 (18)−0.008 (2)
C70.037 (2)0.049 (3)0.051 (2)−0.0103 (18)0.0162 (18)−0.008 (2)
C80.038 (2)0.032 (2)0.043 (2)0.0018 (16)0.0163 (17)0.0026 (17)
C90.0308 (18)0.033 (2)0.0309 (19)−0.0009 (15)0.0095 (15)−0.0046 (16)
C100.039 (2)0.037 (2)0.043 (2)0.0046 (17)0.0142 (17)0.0024 (18)
C110.055 (3)0.043 (2)0.047 (2)0.003 (2)0.0222 (19)0.009 (2)
C120.049 (2)0.067 (3)0.053 (2)−0.012 (2)0.029 (2)−0.001 (2)
C130.035 (2)0.079 (4)0.055 (3)0.005 (2)0.019 (2)0.002 (2)
C140.040 (2)0.055 (3)0.043 (2)0.0121 (19)0.0139 (18)0.010 (2)

Geometric parameters (Å, °)

Ni1—O11.817 (2)C6—C71.372 (5)
Ni1—O1i1.817 (2)C7—H70.93
Ni1—N1i1.926 (3)C8—C91.510 (5)
Ni1—N11.926 (3)C8—H8A0.97
Cl1—C61.743 (4)C8—H8B0.97
N1—C11.284 (4)C9—C101.361 (5)
N1—C81.480 (4)C9—C141.377 (5)
O1—C31.301 (4)C10—C111.380 (5)
C1—C21.434 (5)C10—H100.93
C1—H10.93C11—C121.369 (6)
C2—C31.399 (5)C11—H110.93
C2—C71.414 (5)C12—C131.367 (6)
C3—C41.409 (5)C12—H120.93
C4—C51.365 (6)C13—C141.378 (6)
C4—H40.93C13—H130.93
C5—C61.379 (6)C14—H140.93
C5—H50.93
O1—Ni1—O1i180C6—C7—C2118.6 (4)
O1—Ni1—N1i87.39 (11)C6—C7—H7120.7
O1i—Ni1—N1i92.61 (11)C2—C7—H7120.7
O1—Ni1—N192.61 (11)N1—C8—C9113.7 (3)
O1i—Ni1—N187.39 (11)N1—C8—H8A108.8
N1i—Ni1—N1180.00 (14)C9—C8—H8A108.8
C1—N1—C8114.6 (3)N1—C8—H8B108.8
C1—N1—Ni1124.9 (2)C9—C8—H8B108.8
C8—N1—Ni1120.5 (2)H8A—C8—H8B107.7
C3—O1—Ni1129.8 (3)C10—C9—C14118.7 (3)
N1—C1—C2126.4 (4)C10—C9—C8123.5 (3)
N1—C1—H1116.8C14—C9—C8117.7 (3)
C2—C1—H1116.8C9—C10—C11120.8 (3)
C3—C2—C7120.9 (3)C9—C10—H10119.6
C3—C2—C1120.5 (3)C11—C10—H10119.6
C7—C2—C1118.5 (4)C12—C11—C10120.3 (4)
O1—C3—C2123.8 (3)C12—C11—H11119.9
O1—C3—C4118.5 (4)C10—C11—H11119.9
C2—C3—C4117.6 (3)C13—C12—C11119.4 (4)
C5—C4—C3121.3 (4)C13—C12—H12120.3
C5—C4—H4119.3C11—C12—H12120.3
C3—C4—H4119.3C12—C13—C14120.1 (4)
C4—C5—C6120.1 (4)C12—C13—H13120.0
C4—C5—H5120.0C14—C13—H13120.0
C6—C5—H5120.0C9—C14—C13120.7 (4)
C7—C6—C5121.4 (4)C9—C14—H14119.6
C7—C6—Cl1118.9 (4)C13—C14—H14119.6
C5—C6—Cl1119.6 (3)
O1—Ni1—N1—C19.0 (3)C4—C5—C6—C70.0 (7)
O1i—Ni1—N1—C1−171.0 (3)C4—C5—C6—Cl1−179.7 (3)
O1—Ni1—N1—C8−171.1 (2)C5—C6—C7—C2−0.8 (6)
O1i—Ni1—N1—C88.9 (2)Cl1—C6—C7—C2178.9 (3)
N1i—Ni1—O1—C3164.0 (3)C3—C2—C7—C60.4 (5)
N1—Ni1—O1—C3−16.0 (3)C1—C2—C7—C6179.3 (3)
C8—N1—C1—C2179.6 (3)C1—N1—C8—C9−111.5 (3)
Ni1—N1—C1—C2−0.4 (5)Ni1—N1—C8—C968.5 (3)
N1—C1—C2—C3−6.1 (6)N1—C8—C9—C1019.2 (5)
N1—C1—C2—C7174.9 (3)N1—C8—C9—C14−163.5 (3)
Ni1—O1—C3—C214.1 (5)C14—C9—C10—C110.4 (6)
Ni1—O1—C3—C4−168.2 (3)C8—C9—C10—C11177.6 (4)
C7—C2—C3—O1178.5 (3)C9—C10—C11—C12−0.5 (6)
C1—C2—C3—O1−0.5 (5)C10—C11—C12—C13−0.5 (6)
C7—C2—C3—C40.7 (5)C11—C12—C13—C141.5 (7)
C1—C2—C3—C4−178.2 (3)C10—C9—C14—C130.7 (6)
O1—C3—C4—C5−179.4 (4)C8—C9—C14—C13−176.8 (4)
C2—C3—C4—C5−1.5 (6)C12—C13—C14—C9−1.6 (7)
C3—C4—C5—C61.1 (6)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2496).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
  • Bruker (1998). SMART Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT (Version 6.02) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Christensen, A., Jensen, H. S., McKee, V., McKenzie, C. J. & Munch, M. (1997). Inorg. Chem.36, 6080–6085. [PubMed]
  • Costes, J. P., Lamere, J. F., Lepetit, C., Lacroix, P. G. & Dahan, F. (2005). Inorg. Chem.44, 1973–1982. [PubMed]
  • Hu, Z.-Q., Li, W.-H., Ding, Y. & Wu, Y. (2005). Acta Cyst.E61, m2526–m2527.
  • Liu, H.-Y., Gao, F., Lu, Z.-S. & Wang, H.-Y. (2006). Acta Cryst. E62, m1306–m1308.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Wallis, W. N. & Cummings, S. C. (1974). Inorg. Chem.13, 991–994.
  • Yu, Y.-Y. (2006). Acta Cryst. E62, m948–m949.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography