PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m201.
Published online 2007 December 18. doi:  10.1107/S1600536807066263
PMCID: PMC2915131

Tetrakis[μ-3-(3-pyridyl)acrylato-κ2 O:O′]bis{(1,10-phenanthroline-κ2 N,N′)[3-(3-pyridyl)acrylato-κ2 O,O′]europium(III)} pentahydrate

Abstract

The europiumIII ion in the title compound, [Eu2(C8H6NO2)6(C12H8N2)2]·5H2O, is coordinated by seven carboxyl­ate O atoms and two N atoms from one phenanthroline mol­ecule. The carboxyl­ate groups of 3-(3-pyrid­yl)acrylate link pairs of europium(III) ions, forming centrosymmetric dinuclear units, which further assemble into a sheet parallel to the (001) plane through hydrogen-bonding inter­actions involving the uncoordinated water mol­ecules. One water molecule is disordered.

Related literature

For related literature, see: Gunning & Cahill (2005 [triangle]); Liu et al. (2006 [triangle]); Ye et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m201-scheme1.jpg

Experimental

Crystal data

  • [Eu2(C8H6NO2)6(C12H8N2)2]·5H2O
  • M r = 1643.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m201-efi1.jpg
  • a = 25.434 (2) Å
  • b = 12.320 (10) Å
  • c = 22.595 (19) Å
  • β = 100.330 (10)°
  • V = 6965.4 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.86 mm−1
  • T = 293 (2) K
  • 0.32 × 0.27 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.585, T max = 0.791
  • 25928 measured reflections
  • 6480 independent reflections
  • 5721 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.044
  • S = 1.03
  • 6480 reflections
  • 460 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle])and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066263/dn2276sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066263/dn2276Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the National Natural Science Foundation of China (20662007) and Nanchang University of Aeronautics (EA20072195).

supplementary crystallographic information

Comment

Recently, assembly of high-dimensional supramolecular coordination polymers have attracted considerable attention by exploiting coordination bonds, hydrogen bondings, and π-π stacks [Ye et al., 2005], not only because of their intriguing sructural diversity, but also for their potential application as smart opotoelectronic, magnetic, and porous materials. 1,10-phenanthroline has been widely used to construct stable supramolecular structures via C—H···O or C—H···N hydrogen bonds and π-π stackings, and 3-pyridylacrylic acid (HTPA) is a potential multidentate ligand, (Gunning et al., 2005; Liu et al., 2006). Here, we report the synthesis and structure of a europium supramolecular complex with 3-(3-pyridyl)acrylato and 1,10-phenanthroline, [Eu2 (C8H6NO2)6 (C12H8N2)]2.(H2O)5 (I).

Each EuIII centre is coordinated by seven carboxylate oxygen atoms and two nitrogen atoms from one phenanthroline molecule; the carboxylate groups of 3-(3-pyridyl)acrylato adopt bridging bidentate, chelating and bridging-chlelating tridentate modes respectively (Fig. 1). the dihedral angles between them are 59.229 (73), 84.724 (65) and 72.190 (56) ° respectively. The carboxylate groups of 3-(3-pyridyl)acrylato link pairs of europium(III) ions to form dinuclear units, which further build up a sheet parallel to the (0 0 1) plane through hydrogen bondings involving the uncoordinated water molecules (Table 1).

Experimental

A mixture of EuCl3.6H2O (0.1 mmol), 3-pyridylacrylic acid (0.1 mmol), 1,10-phenanthroline (0.1 mmol), H2O (10 ml), and 0.65 M NaOH aqueous solution (0.1 mmol) was sealed in a 25 ml Teflon-lined stainless reactor and heated at 393 K for 72 h under autogenous pressure, then cooled to room temperature, when a few colourless crystals were obtained. Analysis: found C 52.33, H 3.96, N 8.73%; C72H62Eu2N10O17 requires C 52.01, H 3.85, N 8.43%.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.82 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atoms.

Figures

Fig. 1.
: The molecular structure of complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radius. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

Crystal data

[Eu2(C8H6NO2)6(C12H8N2)2]·5H2OF000 = 3304
Mr = 1643.24Dx = 1.567 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7048 reflections
a = 25.434 (2) Åθ = 2.7–28.1º
b = 12.320 (10) ŵ = 1.86 mm1
c = 22.595 (19) ÅT = 293 (2) K
β = 100.330 (10)ºBlock, colorless
V = 6965.4 (10) Å30.32 × 0.27 × 0.13 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer6480 independent reflections
Radiation source: fine-focus sealed tube5721 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 293(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −30→30
Tmin = 0.585, Tmax = 0.791k = −14→14
25928 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.044  w = 1/[σ2(Fo2) + (0.0183P)2 + 8.1685P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.006
6480 reflectionsΔρmax = 0.34 e Å3
460 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Eu10.528205 (4)0.611291 (8)0.562535 (4)0.02456 (4)
O50.58593 (7)0.57165 (15)0.66055 (7)0.0457 (4)
O60.62759 (6)0.62061 (13)0.58772 (7)0.0417 (4)
N30.82161 (9)0.3750 (2)0.77152 (12)0.0627 (7)
N40.55055 (7)0.81740 (14)0.56748 (8)0.0312 (4)
N50.48983 (7)0.72683 (15)0.64279 (8)0.0311 (4)
C170.62845 (9)0.58151 (19)0.63974 (11)0.0375 (6)
C180.68033 (10)0.5427 (2)0.67463 (12)0.0442 (6)
H180.71100.55150.65810.053*
C190.68467 (10)0.4966 (2)0.72778 (11)0.0430 (6)
H190.65380.49540.74440.052*
C200.73241 (10)0.4467 (2)0.76421 (11)0.0415 (6)
C210.73315 (12)0.4186 (3)0.82349 (13)0.0589 (8)
H210.70350.43190.84120.071*
C220.77820 (14)0.3705 (3)0.85628 (14)0.0729 (10)
H220.77960.35210.89640.087*
C230.82070 (13)0.3506 (3)0.82849 (15)0.0664 (9)
H230.85080.31790.85090.080*
C240.77778 (10)0.4222 (2)0.74091 (12)0.0500 (7)
H240.77770.44000.70090.060*
C250.58064 (10)0.8617 (2)0.53183 (11)0.0418 (6)
H250.59970.81600.51060.050*
C260.58516 (12)0.9740 (2)0.52446 (12)0.0531 (7)
H260.60671.00170.49880.064*
C270.55780 (12)1.0418 (2)0.55515 (13)0.0562 (7)
H270.55991.11650.55010.067*
C280.52609 (10)0.99896 (19)0.59464 (12)0.0450 (6)
C290.49626 (13)1.0650 (2)0.62910 (15)0.0629 (8)
H290.49731.14010.62550.076*
C300.46693 (12)1.0205 (2)0.66633 (15)0.0611 (8)
H300.44851.06550.68860.073*
C310.46320 (10)0.9054 (2)0.67276 (12)0.0435 (6)
C320.43288 (10)0.8555 (2)0.71132 (12)0.0505 (7)
H320.41340.89780.73380.061*
C330.43197 (10)0.7457 (2)0.71572 (11)0.0472 (6)
H330.41240.71200.74150.057*
C340.46102 (9)0.6843 (2)0.68077 (10)0.0395 (6)
H340.46020.60910.68420.047*
C350.49140 (8)0.83702 (18)0.63913 (10)0.0318 (5)
C360.52348 (9)0.88490 (17)0.59938 (10)0.0331 (5)
O10.44766 (7)0.35404 (12)0.53195 (7)0.0375 (4)
O20.47138 (6)0.48567 (12)0.60014 (7)0.0389 (4)
O30.44546 (6)0.55841 (12)0.47089 (7)0.0367 (4)
O40.44788 (6)0.71259 (12)0.51991 (7)0.0382 (4)
N10.40521 (14)0.2529 (3)0.83252 (12)0.0830 (9)
N20.21675 (9)0.92111 (19)0.44666 (11)0.0541 (6)
C10.44874 (9)0.39752 (17)0.58251 (10)0.0328 (5)
C20.42104 (10)0.33633 (19)0.62482 (10)0.0395 (5)
H20.39760.28140.60900.047*
C30.42757 (10)0.35487 (19)0.68318 (11)0.0390 (6)
H30.44950.41290.69790.047*
C40.40369 (11)0.2931 (2)0.72740 (11)0.0428 (6)
C50.36142 (13)0.2224 (2)0.71075 (14)0.0632 (8)
H50.34660.21180.67040.076*
C60.34154 (17)0.1676 (3)0.75602 (19)0.0866 (12)
H60.31290.11990.74660.104*
C70.36502 (18)0.1855 (3)0.81466 (18)0.0882 (12)
H70.35160.14730.84420.106*
C80.42271 (12)0.3066 (3)0.78849 (12)0.0584 (8)
H80.44980.35710.79970.070*
C90.42372 (9)0.64675 (17)0.48230 (9)0.0295 (5)
C100.36825 (9)0.67176 (18)0.45216 (10)0.0336 (5)
H100.35140.62660.42160.040*
C110.34228 (9)0.75715 (18)0.46803 (10)0.0346 (5)
H110.36070.79980.49890.041*
C120.28771 (9)0.79227 (19)0.44256 (11)0.0392 (6)
C130.25486 (11)0.7384 (3)0.39657 (14)0.0658 (9)
H130.26740.67770.37890.079*
C140.20331 (12)0.7750 (3)0.37698 (17)0.0795 (11)
H140.18070.73900.34640.095*
C150.18612 (11)0.8654 (3)0.40342 (15)0.0651 (9)
H150.15120.88880.39040.078*
C160.26665 (10)0.8837 (2)0.46531 (12)0.0457 (6)
H160.28860.92200.49560.055*
O1W0.69847 (9)0.61683 (17)0.50760 (12)0.0848 (8)
H11W0.67880.61220.53400.127*
H12W0.69860.55650.48950.127*
O2W0.30658 (11)0.1792 (3)0.55009 (14)0.1219 (11)
H21W0.28050.20950.55940.183*
H22W0.29730.14330.51930.183*
O3W0.3341 (3)0.9915 (5)0.6047 (3)0.133 (2)0.50
H32W0.30351.00820.60780.199*0.50
H31W0.35211.04100.59440.199*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.02668 (6)0.02120 (6)0.02471 (6)−0.00104 (4)0.00168 (4)−0.00081 (4)
O50.0382 (10)0.0595 (11)0.0366 (9)0.0112 (8)−0.0010 (8)0.0015 (8)
O60.0356 (9)0.0442 (10)0.0416 (10)−0.0015 (7)−0.0026 (7)0.0035 (8)
N30.0460 (14)0.0697 (17)0.0676 (17)0.0169 (12)−0.0031 (12)0.0009 (13)
N40.0331 (10)0.0262 (10)0.0332 (10)−0.0044 (8)0.0026 (8)−0.0031 (8)
N50.0327 (10)0.0322 (10)0.0270 (9)−0.0002 (8)0.0018 (8)−0.0025 (8)
C170.0348 (13)0.0324 (13)0.0411 (14)0.0016 (10)−0.0045 (11)−0.0092 (10)
C180.0327 (13)0.0459 (15)0.0499 (15)0.0015 (11)−0.0033 (11)−0.0014 (12)
C190.0366 (13)0.0420 (14)0.0471 (15)0.0007 (11)−0.0016 (11)−0.0039 (12)
C200.0400 (14)0.0367 (13)0.0431 (14)0.0008 (11)−0.0057 (11)−0.0026 (11)
C210.0577 (18)0.068 (2)0.0492 (17)0.0100 (15)0.0041 (14)0.0027 (14)
C220.079 (2)0.084 (2)0.0483 (18)0.0120 (19)−0.0102 (17)0.0169 (16)
C230.0566 (19)0.0612 (19)0.070 (2)0.0155 (15)−0.0192 (16)0.0079 (16)
C240.0455 (15)0.0541 (16)0.0469 (15)0.0046 (13)−0.0013 (12)0.0001 (12)
C250.0464 (15)0.0380 (14)0.0418 (14)−0.0111 (11)0.0102 (11)−0.0053 (11)
C260.0648 (18)0.0425 (15)0.0533 (17)−0.0208 (14)0.0140 (14)0.0019 (13)
C270.0678 (19)0.0272 (14)0.072 (2)−0.0109 (13)0.0082 (16)0.0033 (13)
C280.0483 (15)0.0273 (12)0.0564 (16)−0.0001 (11)0.0012 (12)−0.0037 (11)
C290.070 (2)0.0292 (14)0.090 (2)0.0054 (14)0.0161 (18)−0.0103 (15)
C300.0621 (19)0.0410 (16)0.082 (2)0.0117 (14)0.0170 (17)−0.0203 (15)
C310.0387 (14)0.0424 (15)0.0483 (15)0.0069 (11)0.0048 (11)−0.0116 (11)
C320.0383 (14)0.0632 (18)0.0511 (16)0.0081 (13)0.0110 (12)−0.0178 (14)
C330.0389 (14)0.0665 (19)0.0373 (14)−0.0032 (13)0.0099 (11)−0.0062 (13)
C340.0429 (14)0.0412 (14)0.0346 (13)−0.0038 (11)0.0077 (11)−0.0019 (10)
C350.0298 (11)0.0306 (12)0.0322 (12)0.0016 (9)−0.0025 (9)−0.0049 (10)
C360.0326 (12)0.0288 (12)0.0348 (12)0.0001 (10)−0.0024 (9)−0.0040 (10)
O10.0497 (10)0.0332 (8)0.0308 (8)−0.0102 (7)0.0099 (7)−0.0043 (7)
O20.0511 (10)0.0324 (9)0.0353 (9)−0.0135 (8)0.0136 (8)−0.0048 (7)
O30.0388 (9)0.0252 (8)0.0454 (9)0.0047 (7)0.0059 (7)−0.0021 (7)
O40.0359 (9)0.0310 (8)0.0426 (9)0.0043 (7)−0.0074 (7)−0.0062 (7)
N10.102 (2)0.097 (2)0.0588 (17)0.014 (2)0.0373 (17)0.0253 (17)
N20.0400 (13)0.0515 (14)0.0725 (16)0.0131 (11)0.0148 (12)0.0069 (12)
C10.0365 (12)0.0291 (12)0.0329 (12)−0.0023 (10)0.0064 (10)0.0012 (10)
C20.0475 (14)0.0341 (13)0.0392 (13)−0.0128 (11)0.0136 (11)−0.0034 (11)
C30.0453 (14)0.0330 (13)0.0413 (14)−0.0038 (11)0.0145 (11)0.0005 (10)
C40.0541 (16)0.0347 (13)0.0443 (15)0.0045 (11)0.0215 (12)0.0046 (11)
C50.085 (2)0.0511 (18)0.0599 (19)−0.0153 (16)0.0310 (17)0.0009 (14)
C60.110 (3)0.063 (2)0.099 (3)−0.032 (2)0.053 (3)0.003 (2)
C70.121 (3)0.080 (3)0.079 (3)0.008 (2)0.060 (3)0.028 (2)
C80.0684 (19)0.068 (2)0.0432 (16)0.0044 (15)0.0209 (14)0.0110 (14)
C90.0330 (12)0.0250 (11)0.0299 (11)0.0008 (9)0.0038 (9)0.0039 (9)
C100.0329 (12)0.0299 (12)0.0354 (12)−0.0021 (10)−0.0011 (10)−0.0044 (10)
C110.0327 (12)0.0337 (12)0.0354 (12)−0.0028 (10)0.0009 (10)−0.0018 (10)
C120.0321 (13)0.0388 (13)0.0456 (14)0.0026 (10)0.0045 (11)0.0012 (11)
C130.0437 (16)0.065 (2)0.080 (2)0.0141 (14)−0.0149 (15)−0.0226 (17)
C140.0462 (18)0.082 (2)0.098 (3)0.0138 (17)−0.0224 (17)−0.025 (2)
C150.0340 (15)0.072 (2)0.085 (2)0.0112 (14)−0.0021 (15)0.0104 (18)
C160.0371 (13)0.0432 (14)0.0565 (16)0.0046 (12)0.0078 (12)0.0001 (12)
O1W0.0709 (15)0.0684 (15)0.128 (2)−0.0128 (12)0.0522 (15)−0.0190 (14)
O2W0.093 (2)0.123 (3)0.140 (3)−0.0135 (19)−0.0045 (19)0.010 (2)
O3W0.139 (5)0.103 (5)0.133 (5)−0.017 (4)−0.036 (4)0.009 (4)

Geometric parameters (Å, °)

Eu1—O3i2.3604 (15)C32—H320.9300
Eu1—O1i2.3638 (15)C33—C341.397 (3)
Eu1—O22.3763 (15)C33—H330.9300
Eu1—O42.4400 (15)C34—H340.9300
Eu1—O52.4765 (16)C35—C361.443 (3)
Eu1—O62.4922 (16)O1—C11.258 (3)
Eu1—N42.6001 (18)O1—Eu1i2.3638 (15)
Eu1—N52.6272 (18)O2—C11.260 (3)
Eu1—O32.7530 (16)O3—C91.268 (3)
Eu1—C172.843 (2)O3—Eu1i2.3604 (15)
Eu1—C92.969 (2)O4—C91.253 (3)
Eu1—Eu1i4.0137 (3)N1—C71.322 (5)
O5—C171.260 (3)N1—C81.336 (4)
O6—C171.267 (3)N2—C151.327 (4)
N3—C231.326 (4)N2—C161.345 (3)
N3—C241.335 (3)C1—C21.490 (3)
N4—C251.324 (3)C2—C31.319 (3)
N4—C361.365 (3)C2—H20.9300
N5—C341.332 (3)C3—C41.471 (3)
N5—C351.361 (3)C3—H30.9300
C17—C181.489 (3)C4—C51.382 (4)
C18—C191.315 (3)C4—C81.388 (4)
C18—H180.9300C5—C61.394 (4)
C19—C201.474 (3)C5—H50.9300
C19—H190.9300C6—C71.370 (5)
C20—C211.380 (4)C6—H60.9300
C20—C241.385 (4)C7—H70.9300
C21—C221.381 (4)C8—H80.9300
C21—H210.9300C9—C101.485 (3)
C22—C231.366 (5)C10—C111.325 (3)
C22—H220.9300C10—H100.9300
C23—H230.9300C11—C121.469 (3)
C24—H240.9300C11—H110.9300
C25—C261.400 (3)C12—C131.381 (4)
C25—H250.9300C12—C161.385 (3)
C26—C271.355 (4)C13—C141.382 (4)
C26—H260.9300C13—H130.9300
C27—C281.408 (4)C14—C151.371 (4)
C27—H270.9300C14—H140.9300
C28—C361.412 (3)C15—H150.9300
C28—C291.434 (4)C16—H160.9300
C29—C301.338 (4)O1W—H11W0.8462
C29—H290.9300O1W—H12W0.8481
C30—C311.431 (4)O2W—H21W0.8204
C30—H300.9300O2W—H22W0.8227
C31—C321.404 (4)O3W—H32W0.8204
C31—C351.413 (3)O3W—H31W0.8198
C32—C331.357 (4)
O3i—Eu1—O1i74.72 (5)N3—C24—H24117.5
O3i—Eu1—O276.31 (5)C20—C24—H24117.5
O1i—Eu1—O2135.54 (5)N4—C25—C26123.3 (2)
O3i—Eu1—O4126.32 (5)N4—C25—H25118.4
O1i—Eu1—O483.44 (6)C26—C25—H25118.4
O2—Eu1—O487.38 (6)C27—C26—C25119.2 (3)
O3i—Eu1—O587.40 (6)C27—C26—H26120.4
O1i—Eu1—O5129.42 (6)C25—C26—H26120.4
O2—Eu1—O581.54 (6)C26—C27—C28119.9 (2)
O4—Eu1—O5140.72 (5)C26—C27—H27120.1
O3i—Eu1—O677.26 (5)C28—C27—H27120.1
O1i—Eu1—O677.34 (6)C27—C28—C36117.5 (2)
O2—Eu1—O6127.26 (6)C27—C28—C29123.4 (2)
O4—Eu1—O6144.08 (5)C36—C28—C29119.1 (3)
O5—Eu1—O652.45 (6)C30—C29—C28121.2 (3)
O3i—Eu1—N4143.74 (6)C30—C29—H29119.4
O1i—Eu1—N476.83 (5)C28—C29—H29119.4
O2—Eu1—N4139.73 (5)C29—C30—C31121.6 (3)
O4—Eu1—N471.25 (5)C29—C30—H30119.2
O5—Eu1—N493.68 (6)C31—C30—H30119.2
O6—Eu1—N474.94 (6)C32—C31—C35117.5 (2)
O3i—Eu1—N5149.61 (6)C32—C31—C30123.4 (2)
O1i—Eu1—N5135.59 (5)C35—C31—C30119.1 (3)
O2—Eu1—N577.35 (5)C33—C32—C31120.0 (2)
O4—Eu1—N566.85 (5)C33—C32—H32120.0
O5—Eu1—N573.95 (6)C31—C32—H32120.0
O6—Eu1—N5107.73 (5)C32—C33—C34118.8 (2)
N4—Eu1—N563.04 (6)C32—C33—H33120.6
O3i—Eu1—O376.84 (5)C34—C33—H33120.6
O1i—Eu1—O369.55 (5)N5—C34—C33124.0 (2)
O2—Eu1—O371.51 (5)N5—C34—H34118.0
O4—Eu1—O349.54 (5)C33—C34—H34118.0
O5—Eu1—O3151.25 (6)N5—C35—C31122.6 (2)
O6—Eu1—O3142.18 (5)N5—C35—C36118.14 (19)
N4—Eu1—O3113.28 (5)C31—C35—C36119.3 (2)
N5—Eu1—O3108.60 (5)N4—C36—C28122.1 (2)
O3i—Eu1—C1778.89 (6)N4—C36—C35118.33 (19)
O1i—Eu1—C17103.18 (7)C28—C36—C35119.6 (2)
O2—Eu1—C17103.45 (7)C1—O1—Eu1i140.95 (14)
O4—Eu1—C17154.62 (6)C1—O2—Eu1136.14 (14)
O5—Eu1—C1726.26 (6)C9—O3—Eu1i169.88 (14)
O6—Eu1—C1726.44 (6)C9—O3—Eu186.92 (12)
N4—Eu1—C1786.25 (6)Eu1i—O3—Eu1103.16 (5)
N5—Eu1—C1792.85 (6)C9—O4—Eu1102.16 (13)
O3—Eu1—C17155.71 (6)C7—N1—C8115.2 (3)
O3i—Eu1—C9102.08 (6)C15—N2—C16116.7 (2)
O1i—Eu1—C976.75 (6)O1—C1—O2126.1 (2)
O2—Eu1—C977.23 (6)O1—C1—C2115.56 (19)
O4—Eu1—C924.37 (5)O2—C1—C2118.4 (2)
O5—Eu1—C9153.82 (6)C3—C2—C1124.4 (2)
O6—Eu1—C9153.25 (6)C3—C2—H2117.8
N4—Eu1—C992.72 (6)C1—C2—H2117.8
N5—Eu1—C986.51 (6)C2—C3—C4126.6 (2)
O3—Eu1—C925.25 (5)C2—C3—H3116.7
C17—Eu1—C9178.95 (6)C4—C3—H3116.7
O3i—Eu1—Eu1i41.90 (4)C5—C4—C8117.5 (2)
O1i—Eu1—Eu1i66.76 (4)C5—C4—C3122.5 (2)
O2—Eu1—Eu1i69.10 (4)C8—C4—C3120.0 (2)
O4—Eu1—Eu1i84.45 (4)C4—C5—C6118.2 (3)
O5—Eu1—Eu1i125.08 (4)C4—C5—H5120.9
O6—Eu1—Eu1i114.34 (4)C6—C5—H5120.9
N4—Eu1—Eu1i138.18 (4)C7—C6—C5118.6 (3)
N5—Eu1—Eu1i136.55 (4)C7—C6—H6120.7
O3—Eu1—Eu1i34.93 (3)C5—C6—H6120.7
C17—Eu1—Eu1i120.79 (5)N1—C7—C6125.1 (3)
C9—Eu1—Eu1i60.18 (4)N1—C7—H7117.4
C17—O5—Eu193.33 (14)C6—C7—H7117.4
C17—O6—Eu192.42 (14)N1—C8—C4125.3 (3)
C23—N3—C24116.3 (3)N1—C8—H8117.4
C25—N4—C36118.12 (19)C4—C8—H8117.4
C25—N4—Eu1121.48 (15)O4—C9—O3120.99 (19)
C36—N4—Eu1119.38 (14)O4—C9—C10119.13 (19)
C34—N5—C35117.2 (2)O3—C9—C10119.86 (19)
C34—N5—Eu1123.15 (15)O4—C9—Eu153.47 (10)
C35—N5—Eu1118.67 (14)O3—C9—Eu167.83 (11)
O5—C17—O6120.7 (2)C10—C9—Eu1169.61 (15)
O5—C17—C18120.6 (2)C11—C10—C9121.3 (2)
O6—C17—C18118.6 (2)C11—C10—H10119.4
O5—C17—Eu160.41 (12)C9—C10—H10119.4
O6—C17—Eu161.14 (12)C10—C11—C12127.6 (2)
C18—C17—Eu1168.00 (16)C10—C11—H11116.2
C19—C18—C17122.9 (2)C12—C11—H11116.2
C19—C18—H18118.5C13—C12—C16116.6 (2)
C17—C18—H18118.5C13—C12—C11123.7 (2)
C18—C19—C20128.0 (3)C16—C12—C11119.7 (2)
C18—C19—H19116.0C12—C13—C14119.7 (3)
C20—C19—H19116.0C12—C13—H13120.2
C21—C20—C24116.6 (2)C14—C13—H13120.2
C21—C20—C19120.9 (2)C15—C14—C13119.0 (3)
C24—C20—C19122.5 (2)C15—C14—H14120.5
C20—C21—C22119.6 (3)C13—C14—H14120.5
C20—C21—H21120.2N2—C15—C14123.4 (3)
C22—C21—H21120.2N2—C15—H15118.3
C23—C22—C21118.6 (3)C14—C15—H15118.3
C23—C22—H22120.7N2—C16—C12124.6 (3)
C21—C22—H22120.7N2—C16—H16117.7
N3—C23—C22123.9 (3)C12—C16—H16117.7
N3—C23—H23118.0H11W—O1W—H12W109.4
C22—C23—H23118.0H21W—O2W—H22W109.8
N3—C24—C20125.0 (3)H32W—O3W—H31W115.1

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H11W···O60.851.942.775 (3)171
O1W—H12W···N2ii0.852.022.856 (3)167
O2W—H21W···O1Wiii0.822.482.851 (4)109
O3W—H31W···O2Wiv0.822.202.655 (7)116

Symmetry codes: (ii) x+1/2, y−1/2, z; (iii) x−1/2, y−1/2, z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2276).

References

  • Bruker (1998). SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788–2792. [PubMed]
  • Liu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319–m2320.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
  • Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev.249, 545–565.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography