PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m199.
Published online 2007 December 18. doi:  10.1107/S1600536807066287
PMCID: PMC2915129

Rhodamine 6G hexa­chlorido­stannate(IV) acetonitrile disolvate

Abstract

In the title compound, bis({6-ethylamino-10-[2-(methoxycarbonyl)phenyl]-2,7-dimethylxanthen-3-ylidene}ethanaminium) hexachloridotin(IV) acetonitrile disolvate, (C27H29N2O3)2[SnCl6]·2C2H3N, the octa­hedral SnCl6 2− anion lies on an inversion center. The xanthene ring system is essentially planar, with an average deviation of 0.020 Å, and the substituent benzene ring forms a dihedral angle of 85.89 (2)° with it. The Sn—Cl distances are in the range 2.4237 (3)–2.4454 (3) Å. There are N—H(...)Cl hydrogen bonds between SnCl6 2− ions and rhodamine 6G cations as well as π–π stacking inter­actions between rhodamine 6G cations (inter­planar distance of 3.827 Å).

Related literature

For related literature, see: Bhagavthy et al. (1993 [triangle]); Fun et al. (1997 [triangle]); Herz (1974 [triangle]); Johnson & McGrane (1993 [triangle]); Liu et al. (1998 [triangle]); Nguyen & Meyer (1992 [triangle]); Wang et al. (1997 [triangle]). For the structure of the analogous ethyl ester as the chloride salt hydrate, see: Adhikesavalu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m199-scheme1.jpg

Experimental

Crystal data

  • (C27H29N2O3)2[SnCl6]·2C2H3N
  • M r = 1272.54
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m199-efi1.jpg
  • a = 9.7871 (10) Å
  • b = 11.7827 (11) Å
  • c = 13.2893 (12) Å
  • α = 80.583 (4)°
  • β = 77.309 (4)°
  • γ = 82.467 (4)°
  • V = 1467.7 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.76 mm−1
  • T = 90.0 (5) K
  • 0.28 × 0.27 × 0.25 mm

Data collection

  • Nonius KappaCCD diffractometer with Oxford Cryostream
  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.815, T max = 0.832
  • 54250 measured reflections
  • 14412 independent reflections
  • 12969 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.073
  • S = 1.03
  • 14412 reflections
  • 362 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.74 e Å−3
  • Δρmin = −1.24 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807066287/pv2056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066287/pv2056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RV acknowledges support for supplies by the grant JSU RISE program (NIH grant No. 1RO25GM067122). The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

The excellent photo-physical properties of rhodamines are well known (Herz, 1974; Johnson & McGrane, 1993; Nguyen & Meyer, 1992), and recently metal complexes of rhodamine 6 G have been reported by several authors (Bhagavthy et al., 1993; Fun et al., 1997; Wang et al., 1997; Liu et al., 1998). The aggregative properties of cationic species of the dye were observed to be dependent on the anionic environment created by the metal ions. We have synthesized a rhodamine 6 G derivative, 9-[2-methoxycarbonyl)phenyl]-3,6-bis(ethylamino)-2,7-dimethylxanthylium hexachlorotin(IV) diacetonitrile solvate, (I), the structure of which is presented in this paper.

The structure of (I) consists of discrete SnCl62- anions lying on inversion centers, rhodamine 6 G cations and acetonitrile solvent molecules (Fig. 1). The xanthene ring of the cation is planar within an average deviation of 0.020 Å (maximum deviation is 0.045 (1) Å for C4), and the phenyl ring forms a dihedral angle of 85.89 (2)° with it. The C—N distances N1—C24 and N2—C26 are normal for this type of single bond, whereas C3—N1 and C11—N2 are much shorter, showing partial double-bond character; details are in the Table. A similar trend is observed in the other rhodamine 6 G cations (Wang et al., 1997; Liu et al., 1998).

Both hydrogen bonding between cations and anions and π-π stacking interactions between rhodamine 6 G cations exist. Parallel rhodamine ions related by the inversion center have an interplanar distance of 3.827 Å (Fig. 2), and are slipped such that their O1—C13 bonds exactly overlap.

Experimental

Diphenyl tin dichloride (0.344 g, 1 mmol) was dissolved in 20 ml me thanol, and then 20 ml of methanol solution of rhodamine 6 G (0.479 g, 1 mmol) was added. The bright red solution was refluxed for 1 hr, whereafter red brown solid were obtained on cooling. Suitable size crystals were obtained by the recrystallization at room temperature from acetonitrile (yield ca 85%).

Refinement

H atoms were placed in idealized positions with C—H distances at 0.99, 0.98 and 0.95 Å for CH2, CH3 and aromatic CH groups, respectively using a riding model. Uiso for H was assigned as 1.2 times Ueq of the attached C atoms (1.5 for methyl); a torsional parameter was refined for each methyl group. The largest positive and negative residual density peaks were located within 1 Å of the Sn1 position.

Figures

Fig. 1.
Numbering scheme and ellipsoids at the 50% level. (i = 1 - x, -y, -z).
Fig. 2.
The unit cell, showing stacking of rhodamine cations and hydrogen bonding.

Crystal data

(C27H29N2O3)2[SnCl6]·2C2H3NZ = 1
Mr = 1272.54F000 = 654
Triclinic, P1Dx = 1.440 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.7871 (10) ÅCell parameters from 13141 reflections
b = 11.7827 (11) Åθ = 2.5–36.8º
c = 13.2893 (12) ŵ = 0.76 mm1
α = 80.583 (4)ºT = 90.0 (5) K
β = 77.309 (4)ºFragment, red-orange
γ = 82.467 (4)º0.28 × 0.27 × 0.25 mm
V = 1467.7 (2) Å3

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream14412 independent reflections
Radiation source: fine-focus sealed tube12969 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 90.0(5) Kθmax = 36.8º
ω scans with κ offsetsθmin = 2.7º
Absorption correction: multi-scan(DENZO and SCALEPACK; Otwinowski & Minor, 1997)h = −16→16
Tmin = 0.815, Tmax = 0.832k = −19→19
54250 measured reflectionsl = −22→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029  w = 1/[σ2(Fo2) + (0.0303P)2 + 0.821P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.74 e Å3
14412 reflectionsΔρmin = −1.24 e Å3
362 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.50000.00000.00000.00926 (3)
Cl10.53900 (3)0.04133 (2)0.164917 (19)0.01502 (5)
Cl20.51522 (3)0.20275 (2)−0.07554 (2)0.01362 (4)
Cl30.24802 (3)0.04038 (2)0.05732 (2)0.01381 (4)
O10.40633 (8)0.58975 (7)0.38427 (6)0.01354 (13)
O21.06811 (9)0.46854 (8)0.36352 (7)0.01853 (15)
O30.83375 (10)0.47563 (9)0.39044 (9)0.0272 (2)
N10.42673 (10)0.33594 (9)0.13842 (8)0.01642 (17)
H1N0.4731 (19)0.3059 (16)0.0897 (14)0.020*
N20.35159 (10)0.83221 (9)0.64389 (7)0.01542 (16)
H2N0.3892 (19)0.8743 (16)0.6750 (14)0.019*
C10.48174 (10)0.54161 (9)0.30004 (8)0.01118 (15)
C20.41464 (10)0.46614 (9)0.26289 (8)0.01275 (16)
H20.32060.45160.29480.015*
C30.48671 (11)0.41085 (9)0.17721 (8)0.01291 (16)
C40.63032 (11)0.43418 (9)0.12992 (8)0.01360 (16)
C50.69115 (11)0.51151 (9)0.16815 (8)0.01310 (16)
H50.78460.52750.13590.016*
C60.62049 (10)0.56913 (9)0.25423 (8)0.01122 (15)
C70.68061 (10)0.64746 (8)0.29612 (8)0.01058 (15)
C80.60111 (10)0.69685 (9)0.38325 (8)0.01108 (15)
C90.65144 (10)0.77664 (9)0.43315 (8)0.01170 (15)
H90.74290.80050.40540.014*
C100.57244 (11)0.82019 (9)0.51976 (8)0.01222 (15)
C110.43234 (11)0.78594 (9)0.56098 (8)0.01258 (16)
C120.38037 (11)0.70714 (9)0.51364 (8)0.01331 (16)
H120.28890.68320.54080.016*
C130.46414 (10)0.66475 (9)0.42693 (8)0.01159 (15)
C140.70941 (13)0.37222 (11)0.04109 (10)0.0197 (2)
H14A0.80740.39070.02320.030*
H14B0.66550.3969−0.01950.030*
H14C0.70690.28860.06160.030*
C150.62856 (12)0.90417 (10)0.57043 (9)0.01553 (17)
H15A0.72390.91860.53260.023*
H15B0.63100.87160.64280.023*
H15C0.56740.97700.56890.023*
C160.82316 (10)0.68456 (8)0.24669 (8)0.01064 (15)
C170.94862 (10)0.62467 (9)0.27097 (8)0.01147 (15)
C181.07793 (11)0.66730 (9)0.22341 (8)0.01360 (16)
H181.16250.62730.24020.016*
C191.08333 (11)0.76787 (9)0.15174 (8)0.01417 (17)
H191.17130.79630.11960.017*
C200.95942 (12)0.82636 (10)0.12744 (9)0.01498 (17)
H200.96290.89480.07840.018*
C210.82987 (11)0.78526 (9)0.17463 (8)0.01412 (17)
H210.74570.82600.15760.017*
C220.94161 (11)0.51676 (9)0.34679 (9)0.01400 (17)
C231.06484 (13)0.36159 (11)0.43498 (10)0.0211 (2)
H23A0.99250.37170.49760.032*
H23B1.15690.34060.45430.032*
H23C1.04290.30000.40140.032*
C240.28833 (12)0.29543 (10)0.18084 (9)0.01633 (18)
H24A0.26280.30190.25620.020*
H24B0.29310.21270.17330.020*
C250.17375 (14)0.36257 (13)0.12788 (12)0.0258 (2)
H25A0.16650.44430.13670.039*
H25B0.08360.33140.15930.039*
H25C0.19730.35540.05350.039*
C260.20472 (12)0.81093 (11)0.68565 (9)0.0185 (2)
H26A0.20000.72960.71900.022*
H26B0.15270.82340.62810.022*
C270.13662 (13)0.89136 (12)0.76511 (10)0.0232 (2)
H27A0.18710.87790.82270.035*
H27B0.03820.87630.79200.035*
H27C0.14060.97180.73190.035*
N3−0.01218 (17)0.87440 (15)0.42927 (13)0.0429 (4)
C280.09893 (16)0.88240 (12)0.37996 (11)0.0259 (2)
C290.23901 (15)0.89178 (14)0.31671 (11)0.0267 (3)
H29A0.27230.82030.28620.040*
H29B0.30310.90420.36030.040*
H29C0.23640.95710.26090.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01002 (4)0.00916 (4)0.00947 (4)−0.00130 (3)−0.00229 (3)−0.00309 (3)
Cl10.01755 (10)0.01736 (11)0.01246 (10)−0.00091 (8)−0.00530 (8)−0.00629 (8)
Cl20.01605 (10)0.01023 (9)0.01489 (10)−0.00222 (7)−0.00319 (8)−0.00189 (7)
Cl30.01070 (9)0.01542 (10)0.01489 (10)−0.00084 (7)−0.00195 (7)−0.00214 (8)
O10.0112 (3)0.0151 (3)0.0155 (3)−0.0041 (2)0.0009 (2)−0.0078 (3)
O20.0122 (3)0.0194 (4)0.0205 (4)0.0012 (3)−0.0034 (3)0.0050 (3)
O30.0140 (4)0.0235 (4)0.0401 (6)−0.0072 (3)−0.0080 (4)0.0150 (4)
N10.0148 (4)0.0163 (4)0.0198 (4)−0.0041 (3)0.0003 (3)−0.0103 (3)
N20.0155 (4)0.0181 (4)0.0135 (4)−0.0043 (3)0.0004 (3)−0.0073 (3)
C10.0097 (3)0.0108 (4)0.0131 (4)−0.0009 (3)−0.0008 (3)−0.0041 (3)
C20.0104 (4)0.0126 (4)0.0162 (4)−0.0023 (3)−0.0012 (3)−0.0058 (3)
C30.0126 (4)0.0116 (4)0.0155 (4)−0.0019 (3)−0.0024 (3)−0.0047 (3)
C40.0120 (4)0.0142 (4)0.0150 (4)−0.0018 (3)−0.0005 (3)−0.0058 (3)
C50.0109 (4)0.0143 (4)0.0143 (4)−0.0017 (3)−0.0002 (3)−0.0054 (3)
C60.0094 (3)0.0113 (4)0.0132 (4)−0.0014 (3)−0.0015 (3)−0.0034 (3)
C70.0092 (3)0.0106 (4)0.0119 (4)−0.0011 (3)−0.0016 (3)−0.0022 (3)
C80.0106 (4)0.0112 (4)0.0118 (4)−0.0019 (3)−0.0017 (3)−0.0026 (3)
C90.0116 (4)0.0114 (4)0.0128 (4)−0.0022 (3)−0.0026 (3)−0.0026 (3)
C100.0133 (4)0.0121 (4)0.0123 (4)−0.0023 (3)−0.0031 (3)−0.0030 (3)
C110.0136 (4)0.0126 (4)0.0115 (4)−0.0019 (3)−0.0010 (3)−0.0032 (3)
C120.0129 (4)0.0138 (4)0.0135 (4)−0.0039 (3)0.0007 (3)−0.0052 (3)
C130.0112 (4)0.0115 (4)0.0127 (4)−0.0025 (3)−0.0015 (3)−0.0038 (3)
C140.0171 (5)0.0222 (5)0.0207 (5)−0.0045 (4)0.0030 (4)−0.0129 (4)
C150.0174 (4)0.0168 (4)0.0149 (4)−0.0039 (3)−0.0038 (3)−0.0067 (3)
C160.0095 (3)0.0114 (4)0.0114 (4)−0.0020 (3)−0.0014 (3)−0.0028 (3)
C170.0099 (4)0.0109 (4)0.0135 (4)−0.0015 (3)−0.0016 (3)−0.0020 (3)
C180.0097 (4)0.0142 (4)0.0168 (4)−0.0018 (3)−0.0015 (3)−0.0029 (3)
C190.0122 (4)0.0149 (4)0.0153 (4)−0.0037 (3)−0.0001 (3)−0.0034 (3)
C200.0152 (4)0.0147 (4)0.0144 (4)−0.0045 (3)−0.0019 (3)0.0005 (3)
C210.0121 (4)0.0140 (4)0.0158 (4)−0.0018 (3)−0.0031 (3)−0.0002 (3)
C220.0124 (4)0.0128 (4)0.0167 (4)−0.0012 (3)−0.0042 (3)−0.0002 (3)
C230.0200 (5)0.0197 (5)0.0199 (5)0.0023 (4)−0.0043 (4)0.0049 (4)
C240.0158 (4)0.0139 (4)0.0206 (5)−0.0046 (3)−0.0018 (4)−0.0065 (4)
C250.0188 (5)0.0259 (6)0.0337 (7)−0.0029 (4)−0.0078 (5)−0.0030 (5)
C260.0152 (4)0.0217 (5)0.0186 (5)−0.0044 (4)0.0023 (4)−0.0088 (4)
C270.0178 (5)0.0290 (6)0.0230 (5)−0.0010 (4)0.0017 (4)−0.0134 (5)
N30.0356 (7)0.0410 (8)0.0433 (8)−0.0075 (6)0.0048 (6)0.0053 (7)
C280.0311 (6)0.0223 (6)0.0233 (6)−0.0063 (5)−0.0045 (5)0.0009 (4)
C290.0252 (6)0.0370 (7)0.0190 (5)−0.0098 (5)−0.0050 (4)−0.0010 (5)

Geometric parameters (Å, °)

Sn1—Cl32.4237 (3)C14—H14A0.9800
Sn1—Cl3i2.4237 (3)C14—H14B0.9800
Sn1—Cl1i2.4396 (3)C14—H14C0.9800
Sn1—Cl12.4396 (3)C15—H15A0.9800
Sn1—Cl2i2.4454 (3)C15—H15B0.9800
Sn1—Cl22.4454 (3)C15—H15C0.9800
O1—C11.3618 (12)C16—C211.3966 (15)
O1—C131.3632 (12)C16—C171.4080 (14)
O2—C221.3417 (13)C17—C181.4017 (14)
O2—C231.4479 (15)C17—C221.4865 (15)
O3—C221.2078 (14)C18—C191.3925 (15)
N1—C31.3443 (13)C18—H180.9500
N1—C241.4583 (15)C19—C201.3893 (16)
N1—H1N0.81 (2)C19—H190.9500
N2—C111.3553 (13)C20—C211.3955 (15)
N2—C261.4613 (15)C20—H200.9500
N2—H2N0.86 (2)C21—H210.9500
C1—C21.3802 (14)C23—H23A0.9800
C1—C61.4169 (14)C23—H23B0.9800
C2—C31.4099 (14)C23—H23C0.9800
C2—H20.9500C24—C251.5201 (18)
C3—C41.4500 (15)C24—H24A0.9900
C4—C51.3673 (14)C24—H24B0.9900
C4—C141.5027 (15)C25—H25A0.9800
C5—C61.4252 (14)C25—H25B0.9800
C5—H50.9500C25—H25C0.9800
C6—C71.4008 (14)C26—C271.5198 (16)
C7—C81.4109 (14)C26—H26A0.9900
C7—C161.4941 (14)C26—H26B0.9900
C8—C131.4128 (14)C27—H27A0.9800
C8—C91.4266 (14)C27—H27B0.9800
C9—C101.3727 (14)C27—H27C0.9800
C9—H90.9500N3—C281.146 (2)
C10—C111.4442 (15)C28—C291.450 (2)
C10—C151.5024 (14)C29—H29A0.9800
C11—C121.4043 (14)C29—H29B0.9800
C12—C131.3839 (14)C29—H29C0.9800
C12—H120.9500
Cl3—Sn1—Cl3i180.0H14A—C14—H14C109.5
Cl3—Sn1—Cl1i89.363 (10)H14B—C14—H14C109.5
Cl3i—Sn1—Cl1i90.638 (10)C10—C15—H15A109.5
Cl3—Sn1—Cl190.638 (10)C10—C15—H15B109.5
Cl3i—Sn1—Cl189.362 (10)H15A—C15—H15B109.5
Cl1i—Sn1—Cl1180.0C10—C15—H15C109.5
Cl3—Sn1—Cl2i90.291 (10)H15A—C15—H15C109.5
Cl3i—Sn1—Cl2i89.709 (10)H15B—C15—H15C109.5
Cl1i—Sn1—Cl2i90.829 (10)C21—C16—C17119.27 (9)
Cl1—Sn1—Cl2i89.170 (10)C21—C16—C7117.43 (9)
Cl3—Sn1—Cl289.709 (10)C17—C16—C7123.29 (9)
Cl3i—Sn1—Cl290.290 (10)C18—C17—C16119.71 (9)
Cl1i—Sn1—Cl289.171 (11)C18—C17—C22121.02 (9)
Cl1—Sn1—Cl290.830 (10)C16—C17—C22119.27 (9)
Cl2i—Sn1—Cl2180.0C19—C18—C17120.52 (10)
C1—O1—C13120.30 (8)C19—C18—H18119.7
C22—O2—C23114.57 (9)C17—C18—H18119.7
C3—N1—C24126.24 (9)C20—C19—C18119.63 (10)
C3—N1—H1N118.0 (13)C20—C19—H19120.2
C24—N1—H1N115.6 (13)C18—C19—H19120.2
C11—N2—C26123.53 (9)C19—C20—C21120.47 (10)
C11—N2—H2N118.5 (12)C19—C20—H20119.8
C26—N2—H2N118.0 (12)C21—C20—H20119.8
O1—C1—C2116.05 (9)C20—C21—C16120.40 (10)
O1—C1—C6121.03 (9)C20—C21—H21119.8
C2—C1—C6122.93 (9)C16—C21—H21119.8
C1—C2—C3119.50 (9)O3—C22—O2122.39 (10)
C1—C2—H2120.3O3—C22—C17124.24 (10)
C3—C2—H2120.3O2—C22—C17113.37 (9)
N1—C3—C2121.95 (10)O2—C23—H23A109.5
N1—C3—C4118.77 (9)O2—C23—H23B109.5
C2—C3—C4119.29 (9)H23A—C23—H23B109.5
C5—C4—C3119.00 (9)O2—C23—H23C109.5
C5—C4—C14121.49 (10)H23A—C23—H23C109.5
C3—C4—C14119.51 (9)H23B—C23—H23C109.5
C4—C5—C6122.88 (9)N1—C24—C25113.19 (10)
C4—C5—H5118.6N1—C24—H24A108.9
C6—C5—H5118.6C25—C24—H24A108.9
C7—C6—C1119.38 (9)N1—C24—H24B108.9
C7—C6—C5124.23 (9)C25—C24—H24B108.9
C1—C6—C5116.38 (9)H24A—C24—H24B107.8
C6—C7—C8118.96 (9)C24—C25—H25A109.5
C6—C7—C16121.31 (9)C24—C25—H25B109.5
C8—C7—C16119.63 (9)H25A—C25—H25B109.5
C7—C8—C13119.28 (9)C24—C25—H25C109.5
C7—C8—C9124.03 (9)H25A—C25—H25C109.5
C13—C8—C9116.67 (9)H25B—C25—H25C109.5
C10—C9—C8122.33 (9)N2—C26—C27110.50 (10)
C10—C9—H9118.8N2—C26—H26A109.5
C8—C9—H9118.8C27—C26—H26A109.5
C9—C10—C11119.04 (9)N2—C26—H26B109.5
C9—C10—C15121.00 (9)C27—C26—H26B109.5
C11—C10—C15119.95 (9)H26A—C26—H26B108.1
N2—C11—C12120.82 (10)C26—C27—H27A109.5
N2—C11—C10119.37 (9)C26—C27—H27B109.5
C12—C11—C10119.80 (9)H27A—C27—H27B109.5
C13—C12—C11119.16 (9)C26—C27—H27C109.5
C13—C12—H12120.4H27A—C27—H27C109.5
C11—C12—H12120.4H27B—C27—H27C109.5
O1—C13—C12115.99 (9)N3—C28—C29179.32 (18)
O1—C13—C8121.03 (9)C28—C29—H29A109.5
C12—C13—C8122.98 (9)C28—C29—H29B109.5
C4—C14—H14A109.5H29A—C29—H29B109.5
C4—C14—H14B109.5C28—C29—H29C109.5
H14A—C14—H14B109.5H29A—C29—H29C109.5
C4—C14—H14C109.5H29B—C29—H29C109.5
C13—O1—C1—C2179.54 (9)C9—C10—C11—C121.40 (15)
C13—O1—C1—C6−0.75 (15)C15—C10—C11—C12−179.79 (10)
O1—C1—C2—C3−178.69 (9)N2—C11—C12—C13177.80 (10)
C6—C1—C2—C31.61 (16)C10—C11—C12—C13−0.92 (16)
C24—N1—C3—C2−4.43 (18)C1—O1—C13—C12−178.66 (9)
C24—N1—C3—C4174.88 (11)C1—O1—C13—C81.91 (15)
C1—C2—C3—N1179.50 (10)C11—C12—C13—O1−179.22 (9)
C1—C2—C3—C40.18 (16)C11—C12—C13—C80.19 (16)
N1—C3—C4—C5179.10 (11)C7—C8—C13—O1−2.03 (15)
C2—C3—C4—C5−1.56 (16)C9—C8—C13—O1179.45 (9)
N1—C3—C4—C14−1.55 (16)C7—C8—C13—C12178.58 (10)
C2—C3—C4—C14177.78 (11)C9—C8—C13—C120.06 (15)
C3—C4—C5—C61.23 (17)C6—C7—C16—C2193.07 (12)
C14—C4—C5—C6−178.10 (11)C8—C7—C16—C21−83.31 (12)
O1—C1—C6—C7−0.26 (15)C6—C7—C16—C17−88.32 (13)
C2—C1—C6—C7179.42 (10)C8—C7—C16—C1795.30 (12)
O1—C1—C6—C5178.39 (9)C21—C16—C17—C180.58 (15)
C2—C1—C6—C5−1.93 (15)C7—C16—C17—C18−178.01 (9)
C4—C5—C6—C7179.04 (10)C21—C16—C17—C22−179.32 (9)
C4—C5—C6—C10.46 (16)C7—C16—C17—C222.09 (15)
C1—C6—C7—C80.11 (15)C16—C17—C18—C19−0.52 (15)
C5—C6—C7—C8−178.42 (10)C22—C17—C18—C19179.38 (10)
C1—C6—C7—C16−176.29 (9)C17—C18—C19—C200.11 (16)
C5—C6—C7—C165.18 (16)C18—C19—C20—C210.25 (16)
C6—C7—C8—C131.00 (15)C19—C20—C21—C16−0.19 (16)
C16—C7—C8—C13177.46 (9)C17—C16—C21—C20−0.23 (15)
C6—C7—C8—C9179.40 (10)C7—C16—C21—C20178.44 (10)
C16—C7—C8—C9−4.14 (15)C23—O2—C22—O32.09 (17)
C7—C8—C9—C10−177.98 (10)C23—O2—C22—C17−178.43 (10)
C13—C8—C9—C100.46 (15)C18—C17—C22—O3179.92 (12)
C8—C9—C10—C11−1.18 (15)C16—C17—C22—O3−0.18 (17)
C8—C9—C10—C15−179.97 (10)C18—C17—C22—O20.46 (15)
C26—N2—C11—C12−4.18 (17)C16—C17—C22—O2−179.64 (9)
C26—N2—C11—C10174.54 (10)C3—N1—C24—C2596.39 (14)
C9—C10—C11—N2−177.33 (10)C11—N2—C26—C27−169.80 (11)
C15—C10—C11—N21.48 (15)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.81 (2)2.61 (2)3.3644 (10)156 (2)
N2—H2N···Cl1ii0.86 (2)2.75 (2)3.5603 (10)159 (2)

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2056).

References

  • Adhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657–659. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bhagavthy, V., Reddy, M. L. P., Rao, T. R. & Damodaran, A. D. (1993). Indian J. Chem. Sect. A, 32, 463–464.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Chinnakali, K., Sivakumar, K., Lu, C.-M., Xiong, R.-G. & You, X.-Z. (1997). Acta Cryst. C53, 1619–1620.
  • Herz, A. H. (1974). Photogr. Sci. Eng.18, 323–335.
  • Johnson, G. E. & McGrane, K. M. (1993). Proc. SPIE-Int. Soc. Opt. Eng.1910, 6–14.
  • Liu, C.-M., Xiong, R.-G., You, X.-Z. & Chen, W. (1998). Acta Chem. Scand.52, 883–890.
  • Nguyen, D. H. & Meyer, Y. H. (1992). Appl. Phys. B, 55, 409–412.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Wang, H., Xiong, R.-G., Liu, C.-M., Chen, H.-Y., You, X.-Z. & Chen, W. (1997). Inorg. Chim. Acta, 254, 183–187.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography