PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m192–m193.
Published online 2007 December 18. doi:  10.1107/S1600536807063507
PMCID: PMC2915124

catena-Poly[[[tetra­aqua­cadmium(II)]-μ-4,4′-bipyridine] fumarate tetra­hydrate]

Abstract

In the crystal structure of the title compound, [Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O, the CdII atom, on an inversion centre, is six-coordinated by four O atoms from four water mol­ecules and two N atoms from 4,4′-bpy mol­ecules in a distorted octa­hedral coordination geometry. Weak C—H(...)O inter­actions between uncoordinated carboxyl­ate O atoms of fumaric acid and water mol­ecules contribute to the crystal packing stability.

Related literature

For related literature, see: Dai et al. (2003 [triangle]); Dalai et al. (2002 [triangle]); Devereux et al. (2000 [triangle]); Kang et al. (2004 [triangle]); Konar et al. (2003 [triangle]); Shen et al. (2004 [triangle]); Tao et al. (2000 [triangle]); Ying, Zheng & Zhang (2004 [triangle]); Ying, Zheng & Zhou (2004 [triangle]); Zheng et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m192-scheme1.jpg

Experimental

Crystal data

  • [Cd(C10H8N2)(H2O)4](C4H2O4)·4H2O
  • M r = 526.77
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m192-efi1.jpg
  • a = 7.183 (5) Å
  • b = 7.802 (5) Å
  • c = 10.038 (5) Å
  • α = 80.434 (5)°
  • β = 87.791 (5)°
  • γ = 73.288 (5)°
  • V = 531.3 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 293 (2) K
  • 0.21 × 0.19 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (Higashi, 1995 [triangle]) T min = 0.804, T max = 0.854
  • 3414 measured reflections
  • 2378 independent reflections
  • 2363 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.072
  • S = 1.08
  • 2378 reflections
  • 165 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.58 e Å−3
  • Δρmin = −1.30 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063507/bq2045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063507/bq2045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Tong Hua Teachers’ College for financial support.

supplementary crystallographic information

Comment

Recently, 4,4'-bipyridine (bpy) hve been used to construct coordination polymers (Tao et al., 2000; Dai et al., 2003). A few structures of copper (Dalai et al., 2002; Ying, Zheng & Zhou, 2004; Kang et al., 2004), manganese (Devereux et al., 2000; Ying, Zheng & Zhang, 2004), nickel (Zheng et al., 2002) and cobalt (Shen et al., 2004; Konar et al., 2003] fumarate complexes with 4,4'-bpy are known. Herein, we report the structure of the title complex with 4,4'-bpy and fumaric acid, [Cd(4,4'-bpy)(H2O)4](C4H2O4)(H2O)4 (I).

The structure of the title compound, shown in Fig. 1, consists of one [Cd(4,4'-bpy)(H2O)4]2+ cation, one uncoordination fumarate anion and four water molecules. The CdII ion is coordinated by one bpy and four water molecules in a distorted octahedral geometry to form a one-dimensional chain. Table 1 gives a listing of selected bond lengths and bond angles, which are comparable to those values found in other such complexes.

There are weak C—H···O hydrogen bonds between uncoordinated carboxylate O atoms of fumaric acid and lattice water molecules, which extend one-dimensional chain into three-dimensional supramolecular packing structure (Fig. 2, Table 2).

Experimental

Cadmium(II) acetate dihydrate (0.080 g, 0.3 mol), 4,4'-bipyridine (0.039 g, 0.2 mmol), fumaric acid (0.232 g, 0.2 mmol), sodium hydroxide (0.024 g, 0.4 mmol) and water (14 ml) were placed in a 23 ml Teflon-lined autoclave, and the autoclave was heated at 423 K for 3 d. After cooling slowly to room temperature at a rate of 10 K h-1, colorless crystals of (I) were obtained. Analysis found: C 31.78, H 5.02, N 5.29%; calculated for C14H26N2O12Cd: C 31.89, H 4.94, N 5.34%.

Refinement

Water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions; Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions with C—H = 0.93Å and refined in riding mode;Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
View of the local coordination of Cd(II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) -x,-y,-z + 2.
Fig. 2.
A packing diagram for the two-dimensional supramolecular hydrogen-bonding framework via C—H···O interactions. The view shows a layer parallel to the ac plane; the view direction is parallel to the b axis. Hydrogen bonds ...

Crystal data

[Cd(C10H8N2)(H2O)4](C4H2O4)·4H2OZ = 1
Mr = 526.77F000 = 268
Triclinic, P1Dx = 1.646 Mg m3
Hall symbol: -p 1Mo Kα radiation λ = 0.71069 Å
a = 7.183 (5) ÅCell parameters from 3394 reflections
b = 7.802 (5) Åθ = 2.1–28.0º
c = 10.038 (5) ŵ = 1.09 mm1
α = 80.434 (5)ºT = 293 (2) K
β = 87.791 (5)ºBlock, colorless
γ = 73.288 (5)º0.21 × 0.19 × 0.15 mm
V = 531.3 (6) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer2378 independent reflections
Radiation source: fine-focus sealed tube2363 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
Detector resolution: 10 pixels mm-1θmax = 28.2º
T = 293(2) Kθmin = 2.1º
ω scanh = −9→9
Absorption correction: multi-scan(Higashi, 1995)k = −10→10
Tmin = 0.804, Tmax = 0.854l = −13→10
3414 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072  w = 1/[σ2(Fo2) + (0.0549P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2378 reflectionsΔρmax = 0.58 e Å3
165 parametersΔρmin = −1.30 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.00001.00000.03262 (9)
O1W−0.1754 (3)−0.1628 (3)0.9055 (2)0.0469 (4)
O2W0.2890 (3)−0.1665 (3)0.9317 (2)0.0554 (5)
O3W0.4251 (4)0.9783 (3)0.3137 (2)0.0540 (5)
O4W0.5895 (3)0.7407 (3)0.1154 (2)0.0492 (4)
O10.6065 (3)0.1946 (3)0.4185 (2)0.0531 (4)
O20.6400 (4)0.3942 (3)0.2406 (2)0.0606 (5)
N1−0.0243 (3)0.1980 (2)0.80060 (18)0.0371 (4)
C10.5988 (3)0.3514 (3)0.3622 (2)0.0387 (4)
C20.5375 (4)0.5053 (3)0.4404 (2)0.0424 (5)
H20.55450.61620.40070.051*
C30.0421 (4)0.1372 (3)0.6866 (2)0.0465 (5)
H30.08230.01260.68730.056*
C40.0540 (4)0.2496 (3)0.5679 (2)0.0468 (5)
H40.10140.20050.49070.056*
C5−0.0050 (3)0.4372 (3)0.56279 (19)0.0317 (4)
C6−0.0735 (4)0.4991 (3)0.6825 (2)0.0438 (5)
H6−0.11350.62290.68520.053*
C7−0.0823 (4)0.3778 (3)0.7969 (2)0.0449 (5)
H7−0.13070.42270.87540.054*
H1WA−0.248 (6)−0.192 (6)0.955 (5)0.087 (15)*
H1WB−0.233 (5)−0.117 (5)0.847 (4)0.052 (10)*
H2WA0.366 (4)−0.196 (4)0.983 (3)0.036 (7)*
H2WB0.300 (5)−0.218 (5)0.877 (4)0.058 (10)*
H3WA0.406 (5)0.923 (5)0.392 (4)0.058 (9)*
H3WB0.493 (6)1.030 (6)0.324 (4)0.081 (13)*
H4WA0.615 (5)0.651 (5)0.147 (4)0.053 (10)*
H4WB0.555 (6)0.805 (6)0.167 (5)0.076 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.04199 (14)0.02980 (13)0.02433 (12)−0.00900 (8)0.00253 (8)−0.00217 (7)
O1W0.0558 (10)0.0477 (10)0.0416 (10)−0.0201 (8)−0.0010 (9)−0.0096 (8)
O2W0.0517 (10)0.0647 (12)0.0434 (10)0.0051 (9)−0.0049 (8)−0.0284 (9)
O3W0.0781 (13)0.0511 (11)0.0409 (10)−0.0323 (10)−0.0092 (9)−0.0037 (8)
O4W0.0629 (11)0.0454 (11)0.0406 (10)−0.0186 (9)−0.0017 (8)−0.0044 (8)
O10.0835 (13)0.0395 (9)0.0421 (9)−0.0222 (9)0.0074 (9)−0.0167 (7)
O20.0999 (15)0.0437 (10)0.0431 (10)−0.0239 (10)0.0203 (10)−0.0195 (8)
N10.0459 (9)0.0343 (9)0.0284 (8)−0.0105 (7)0.0014 (7)0.0002 (7)
C10.0462 (11)0.0358 (10)0.0389 (11)−0.0145 (8)0.0051 (8)−0.0158 (9)
C20.0583 (13)0.0353 (10)0.0387 (11)−0.0171 (9)0.0089 (9)−0.0151 (8)
C30.0692 (15)0.0313 (10)0.0334 (11)−0.0084 (10)0.0050 (10)−0.0011 (8)
C40.0710 (15)0.0336 (11)0.0300 (11)−0.0079 (10)0.0097 (10)−0.0033 (8)
C50.0350 (9)0.0318 (9)0.0268 (9)−0.0094 (7)−0.0010 (7)−0.0003 (8)
C60.0656 (14)0.0310 (10)0.0317 (10)−0.0099 (9)0.0056 (9)−0.0043 (8)
C70.0636 (14)0.0370 (11)0.0297 (10)−0.0091 (10)0.0065 (9)−0.0035 (8)

Geometric parameters (Å, °)

Cd1—O2Wi2.259 (2)O2—C11.257 (3)
Cd1—O2W2.259 (2)N1—C31.331 (3)
Cd1—N1i2.295 (2)N1—C71.338 (3)
Cd1—N12.295 (2)C1—C21.495 (3)
Cd1—O1W2.348 (2)C2—C2ii1.293 (5)
Cd1—O1Wi2.348 (2)C2—H20.9300
O1W—H1WA0.76 (5)C3—C41.373 (3)
O1W—H1WB0.71 (4)C3—H30.9300
O2W—H2WA0.73 (3)C4—C51.394 (3)
O2W—H2WB0.72 (4)C4—H40.9300
O3W—H3WA0.85 (4)C5—C61.390 (3)
O3W—H3WB0.74 (4)C5—C5iii1.476 (4)
O4W—H4WA0.70 (4)C6—C71.373 (3)
O4W—H4WB0.77 (4)C6—H60.9300
O1—C11.246 (3)C7—H70.9300
O2Wi—Cd1—O2W180.0C3—N1—Cd1120.40 (15)
O2Wi—Cd1—N1i89.00 (8)C7—N1—Cd1121.73 (15)
O2W—Cd1—N1i91.00 (8)O1—C1—O2124.9 (2)
O2Wi—Cd1—N191.00 (8)O1—C1—C2120.0 (2)
O2W—Cd1—N189.00 (8)O2—C1—C2115.1 (2)
N1i—Cd1—N1180.0C2ii—C2—C1124.4 (3)
O2Wi—Cd1—O1W86.81 (9)C2ii—C2—H2117.8
O2W—Cd1—O1W93.19 (9)C1—C2—H2117.8
N1i—Cd1—O1W89.40 (8)N1—C3—C4123.1 (2)
N1—Cd1—O1W90.60 (8)N1—C3—H3118.4
O2Wi—Cd1—O1Wi93.19 (9)C4—C3—H3118.4
O2W—Cd1—O1Wi86.81 (9)C3—C4—C5120.1 (2)
N1i—Cd1—O1Wi90.60 (8)C3—C4—H4120.0
N1—Cd1—O1Wi89.40 (8)C5—C4—H4120.0
O1W—Cd1—O1Wi180.0C6—C5—C4116.28 (18)
Cd1—O1W—H1WA112 (3)C6—C5—C5iii121.9 (2)
Cd1—O1W—H1WB117 (3)C4—C5—C5iii121.8 (2)
H1WA—O1W—H1WB103 (4)C7—C6—C5120.1 (2)
Cd1—O2W—H2WA115 (2)C7—C6—H6119.9
Cd1—O2W—H2WB124 (3)C5—C6—H6119.9
H2WA—O2W—H2WB117 (4)N1—C7—C6123.0 (2)
H3WA—O3W—H3WB106 (4)N1—C7—H7118.5
H4WA—O4W—H4WB111 (4)C6—C7—H7118.5
C3—N1—C7117.36 (19)
O2Wi—Cd1—N1—C3−144.1 (2)C7—N1—C3—C40.3 (4)
O2W—Cd1—N1—C335.9 (2)Cd1—N1—C3—C4−171.6 (2)
O1W—Cd1—N1—C3−57.3 (2)N1—C3—C4—C50.0 (4)
O1Wi—Cd1—N1—C3122.7 (2)C3—C4—C5—C60.2 (4)
O2Wi—Cd1—N1—C744.3 (2)C3—C4—C5—C5iii−179.8 (3)
O2W—Cd1—N1—C7−135.7 (2)C4—C5—C6—C7−0.7 (3)
O1W—Cd1—N1—C7131.1 (2)C5iii—C5—C6—C7179.3 (3)
O1Wi—Cd1—N1—C7−48.9 (2)C3—N1—C7—C6−0.8 (4)
O1—C1—C2—C2ii−10.8 (5)Cd1—N1—C7—C6171.0 (2)
O2—C1—C2—C2ii169.3 (3)C5—C6—C7—N11.0 (4)

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3Wiii0.71 (4)2.10 (4)2.811 (3)175 (4)
O1W—H1WA···O4Wiv0.76 (5)2.04 (5)2.790 (3)168 (5)
O4W—H4WB···O3W0.77 (4)2.16 (4)2.929 (3)173 (4)
O3W—H3WB···O1v0.74 (4)2.06 (4)2.759 (3)157 (4)
O4W—H4WA···O20.70 (4)2.02 (4)2.714 (3)170 (4)
O3W—H3WA···O1ii0.85 (4)1.98 (4)2.833 (3)172 (3)
O2W—H2WB···O2vi0.72 (4)1.91 (4)2.615 (3)168 (4)
O2W—H2WA···O4Wvii0.73 (3)2.02 (3)2.748 (3)175 (3)

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x−1, y−1, z+1; (v) x, y+1, z; (ii) −x+1, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2045).

References

  • Dai, J.-C., Hu, S.-M., Wu, X.-T., Fu, Z.-Y., Du, W.-X., Zhang, H.-H. & Sun, R.-Q. (2003). New J. Chem.27, 914–918.
  • Dalai, S., Mukherjee, P.-S., Zangrando, E., Lloret, F. & Chaudhuri, N.-R. (2002). J. Chem. Soc. Dalton Trans. pp. 822–823.
  • Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kang, Y., Li, Z.-J., Qin, Y.-Y., Chen, Y.-B., Zhang, J., Hu, R.-F., Wen, Y.-H., Cheng, J.-K. & Yao, Y.-G. (2004). Chin. J. Struct. Chem.23, 862–864.
  • Konar, S., Zangrando, E. & Chaudhuri, N.-R. (2003). Inorg. Chim. Acta, 355, 264–271.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1990). SHELXTL-Plus Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Shen, L., Wang, H.-T. & Zhang, Y.-J. (2004). Chin. J. Inorg. Chem.20, 857–859.
  • Tao, J., Tong, M.-L. & Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669–3674.
  • Ying, E.-B., Zheng, Y.-Q. & Zhang, H.-J. (2004). J. Coord. Chem.57, 459–467.
  • Ying, E.-B., Zheng, Y.-Q. & Zhou, Q.-Q. (2004). Z. Kristallogr. New Cryst. Struct.219, 65–66.
  • Zheng, Y.-Q., Kong, Z.-P. & Lin, J.-L. (2002). Z. Kristallogr. New Cryst. Struct.217, 195–196.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography