PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m191.
Published online 2007 December 18. doi:  10.1107/S1600536807066196
PMCID: PMC2915123

[3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato](pyridine-2,6-dicarboxyl­ato)nickel(II) dihydrate

Abstract

In the title compound, [Ni(C11H9ClN3O2)(C7H3NO4)]·2H2O, the NiII atom is coordinated by two N atoms and one O atom of 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate and by one N atom and two O atoms of pyridine-2,6-dicarboxyl­ate in a distorted octa­hedral coordination. In the crystal structure, mol­ecules are linked together by inter­molecular O—H(...)O hydrogen bonds. One water mol­ecule is disordered over two positions; the site occupancies are ca 0.53 and 0.47.

Related literature

For related literature, see: Bhatia et al. (1981 [triangle]); Costamagna et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m191-scheme1.jpg

Experimental

Crystal data

  • [Ni(C11H9ClN3O2)(C7H3NO4)]·2H2O
  • M r = 510.51
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m191-efi1.jpg
  • a = 7.6267 (12) Å
  • b = 11.3464 (15) Å
  • c = 13.249 (2) Å
  • α = 109.607 (3)°
  • β = 91.782 (2)°
  • γ = 101.095 (2)°
  • V = 1054.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 298 (2) K
  • 0.58 × 0.45 × 0.44 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.568, T max = 0.643
  • 5476 measured reflections
  • 3641 independent reflections
  • 3129 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.091
  • S = 1.08
  • 3641 reflections
  • 293 parameters
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066196/rk2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066196/rk2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry, and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012 and 0509ZD047).

supplementary crystallographic information

Comment

In recent years, there has been an increasing interest in the coordination chemistry due to the increased recognition of it's role in catalysis enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). We report here the crystal structure of a new nickel(II) complex with the ligand 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinic acid (CDPA) and pyridine-2,6-dicarboxylate (PDBL). (I) (Fig. 1).

The title compound, (I), consists of a central asymmetric Triclinic nickel(II) complex cation,two uncoordinated water molecules. In the cation (Fig. 1), the Ni atom is six-coordinated by three atoms and three O atoms from CDPA and PDBL ligands. The Ni(II) atom is a slightly distorted octahedral environment. The Ni—O bond length is 2.0699 (19), 2.0702 (18) and 2.2263 (18) Å, The Ni—N distances range from 1.973 (2) to 2.103 (2) Å, i.e. normal values. The C1—C2 bond length is 1.526 (3) Å, being in the normal C—C ranges in nickel carboxylate complexes. The angles around Ni(II) atom are from 76.78 (8) to 177.69 (8)°.

In the title compound, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving water O atom. (Table 1 and Fig. 2).

Experimental

3-chloro-(6-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, pyridine-2,6-dicarboxylic acid and NiCl2.6H2O were available commercially and were used without further purification. Equimolar 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (0.5 mmol, 125 mg) and pyridine-2,6-dicarboxylic acid (0.5 mmol, 83 mg) were dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added NiCl2.6H2O (0.5 mmol, 113 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, dark red prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 42.25; H, 3.26; N, 10.88; O, 25.17; calc. for C18H16ClNiN4O8: C, 42.35; H, 3.16; N, 10.98; O, 25.07.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and 0.96 Å for aromatic and methyl C atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), respectively. One of two water molecules is disorder on two positions with ratio 0.531 (7)/0.469. The H atoms of water molecules were located from the difference Fourier map and constrained to ride on their parent atoms with O—H distances of 0.85 Å with and Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.

Crystal data

[Ni(C11H9ClN3O2)(C7H3NO4)]·2H2OZ = 2
Mr = 510.51F000 = 522
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.6267 (12) ÅCell parameters from 3593 reflections
b = 11.3464 (15) Åθ = 2.7–28.1º
c = 13.249 (2) ŵ = 1.10 mm1
α = 109.607 (3)ºT = 298 (2) K
β = 91.782 (2)ºBlock, red
γ = 101.095 (2)º0.58 × 0.45 × 0.44 mm
V = 1054.2 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3641 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.015
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.568, Tmax = 0.643k = −12→13
5476 measured reflectionsl = −15→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091  w = 1/[σ2(Fo2) + (0.0462P)2 + 0.6077P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3641 reflectionsΔρmax = 0.69 e Å3
293 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.11832 (4)0.72626 (3)0.79837 (3)0.03200 (12)
Cl10.53279 (9)1.22449 (6)0.90615 (6)0.04192 (18)
N10.2169 (2)0.90224 (17)0.90552 (15)0.0256 (4)
N20.0633 (3)0.83056 (19)1.02607 (16)0.0305 (5)
N3−0.0044 (3)0.72177 (19)0.93738 (18)0.0340 (5)
N40.0195 (3)0.55626 (19)0.68857 (17)0.0324 (5)
O10.2745 (3)0.81200 (17)0.70655 (14)0.0430 (5)
O20.4539 (3)0.99224 (18)0.71001 (16)0.0490 (5)
O3−0.1242 (3)0.75292 (17)0.71801 (15)0.0429 (5)
O4−0.3359 (3)0.6456 (2)0.57937 (18)0.0534 (6)
O50.3096 (2)0.62668 (16)0.81841 (15)0.0421 (5)
O60.3768 (3)0.43402 (19)0.75516 (18)0.0538 (6)
O70.6231 (3)0.8470 (2)0.56152 (17)0.0604 (6)
H7D0.56800.88910.61130.073*
H7E0.63300.77860.57210.073*
O80.4876 (11)0.2126 (6)0.6424 (5)0.0688 (16)0.531 (7)
H8A0.45430.28080.67780.083*0.531 (7)
H8B0.45270.19290.57610.083*0.531 (7)
O8'0.3723 (12)0.1814 (7)0.6398 (6)0.0688 (16)0.469 (7)
H8'A0.37320.25940.67530.083*0.469 (7)
H8'B0.37340.17230.57350.083*0.469 (7)
C10.3524 (3)0.9265 (2)0.7521 (2)0.0330 (6)
C20.3239 (3)0.9862 (2)0.87041 (19)0.0266 (5)
C30.3961 (3)1.1083 (2)0.9421 (2)0.0279 (5)
C40.3575 (3)1.1402 (2)1.0492 (2)0.0312 (5)
H40.40621.22171.09820.037*
C50.2487 (3)1.0525 (2)1.0825 (2)0.0322 (5)
H50.22221.07301.15360.039*
C60.1791 (3)0.9317 (2)1.00644 (19)0.0263 (5)
C70.0512 (5)0.9129 (3)1.2297 (2)0.0551 (8)
H7A−0.00740.87941.28040.083*
H7B0.01500.99071.23370.083*
H7C0.17900.93041.24640.083*
C8−0.0002 (3)0.8168 (3)1.1183 (2)0.0379 (6)
C9−0.1110 (4)0.6988 (3)1.0864 (2)0.0450 (7)
H9−0.17530.66201.13080.054*
C10−0.1108 (3)0.6430 (3)0.9752 (3)0.0410 (7)
C11−0.2136 (5)0.5145 (3)0.9029 (3)0.0621 (9)
H11A−0.32470.52330.87320.093*
H11B−0.23810.45830.94350.093*
H11C−0.14390.47940.84560.093*
C12−0.2015 (4)0.6548 (3)0.6448 (2)0.0388 (6)
C13−0.1315 (4)0.5346 (2)0.6252 (2)0.0371 (6)
C14−0.2037 (4)0.4148 (3)0.5500 (2)0.0472 (7)
H14−0.30890.40010.50610.057*
C15−0.1136 (4)0.3176 (3)0.5424 (2)0.0507 (8)
H15−0.15980.23540.49380.061*
C160.0447 (4)0.3423 (3)0.6069 (2)0.0444 (7)
H160.10670.27770.60110.053*
C170.1093 (3)0.4646 (2)0.6802 (2)0.0338 (6)
C180.2816 (4)0.5107 (2)0.7570 (2)0.0367 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0352 (2)0.02198 (18)0.0315 (2)0.00137 (13)−0.00454 (13)0.00317 (13)
Cl10.0429 (4)0.0296 (3)0.0491 (4)−0.0041 (3)0.0020 (3)0.0152 (3)
N10.0259 (10)0.0221 (9)0.0269 (10)0.0044 (8)−0.0007 (8)0.0067 (8)
N20.0267 (10)0.0299 (10)0.0330 (11)0.0014 (8)0.0001 (8)0.0114 (9)
N30.0297 (11)0.0275 (11)0.0424 (13)0.0007 (9)−0.0021 (9)0.0127 (9)
N40.0356 (11)0.0258 (10)0.0309 (11)0.0027 (9)−0.0042 (9)0.0064 (9)
O10.0560 (12)0.0331 (10)0.0287 (10)−0.0004 (9)0.0038 (8)0.0020 (8)
O20.0706 (14)0.0365 (10)0.0397 (11)0.0088 (10)0.0212 (10)0.0133 (9)
O30.0491 (11)0.0340 (10)0.0396 (11)0.0115 (9)−0.0080 (9)0.0045 (9)
O40.0479 (12)0.0526 (12)0.0547 (13)0.0107 (10)−0.0183 (10)0.0143 (10)
O50.0400 (10)0.0319 (10)0.0439 (11)0.0059 (8)−0.0115 (8)0.0020 (8)
O60.0575 (13)0.0448 (11)0.0565 (13)0.0222 (10)−0.0095 (10)0.0095 (10)
O70.0828 (16)0.0639 (14)0.0482 (13)0.0434 (13)0.0183 (11)0.0208 (11)
O80.125 (5)0.054 (3)0.0393 (15)0.038 (4)0.026 (4)0.0198 (18)
O8'0.125 (5)0.054 (3)0.0393 (15)0.038 (4)0.026 (4)0.0198 (18)
C10.0389 (14)0.0304 (13)0.0285 (13)0.0087 (11)0.0026 (11)0.0079 (11)
C20.0254 (12)0.0248 (11)0.0292 (13)0.0060 (9)0.0005 (10)0.0087 (10)
C30.0242 (12)0.0236 (11)0.0349 (13)0.0034 (9)−0.0018 (10)0.0102 (10)
C40.0319 (13)0.0223 (11)0.0313 (13)0.0050 (10)−0.0049 (10)0.0001 (10)
C50.0322 (13)0.0338 (13)0.0264 (13)0.0071 (11)0.0011 (10)0.0052 (10)
C60.0240 (12)0.0269 (12)0.0285 (13)0.0070 (9)0.0009 (9)0.0096 (10)
C70.066 (2)0.066 (2)0.0377 (17)0.0116 (17)0.0136 (15)0.0236 (15)
C80.0324 (14)0.0488 (16)0.0423 (15)0.0122 (12)0.0077 (11)0.0261 (13)
C90.0386 (15)0.0526 (17)0.0578 (19)0.0116 (13)0.0130 (13)0.0357 (15)
C100.0301 (14)0.0351 (14)0.0636 (19)0.0043 (11)0.0000 (12)0.0267 (14)
C110.0520 (19)0.0402 (17)0.089 (3)−0.0094 (14)−0.0024 (18)0.0270 (17)
C120.0379 (14)0.0392 (15)0.0368 (15)0.0067 (12)−0.0032 (12)0.0117 (12)
C130.0390 (14)0.0323 (13)0.0342 (14)0.0013 (11)−0.0065 (11)0.0086 (11)
C140.0498 (17)0.0377 (15)0.0416 (16)−0.0027 (13)−0.0157 (13)0.0061 (12)
C150.065 (2)0.0276 (14)0.0418 (17)−0.0026 (13)−0.0135 (14)−0.0016 (12)
C160.0595 (18)0.0278 (13)0.0404 (16)0.0092 (12)−0.0028 (13)0.0058 (12)
C170.0416 (14)0.0275 (12)0.0292 (13)0.0064 (11)0.0000 (11)0.0067 (10)
C180.0417 (15)0.0324 (14)0.0345 (14)0.0080 (12)−0.0020 (11)0.0103 (11)

Geometric parameters (Å, °)

Ni1—N41.973 (2)O8'—H8'A0.8500
Ni1—N12.0052 (19)O8'—H8'B0.8500
Ni1—O12.0699 (19)C1—C21.526 (3)
Ni1—O52.0702 (18)C2—C31.384 (3)
Ni1—N32.103 (2)C3—C41.398 (4)
Ni1—O32.2263 (18)C4—C51.369 (4)
Cl1—C31.725 (2)C4—H40.9300
N1—C61.321 (3)C5—C61.392 (3)
N1—C21.346 (3)C5—H50.9300
N2—C81.373 (3)C7—C81.497 (4)
N2—N31.384 (3)C7—H7A0.9600
N2—C61.410 (3)C7—H7B0.9600
N3—C101.325 (3)C7—H7C0.9600
N4—C171.329 (3)C8—C91.359 (4)
N4—C131.336 (3)C9—C101.395 (4)
O1—C11.248 (3)C9—H90.9300
O2—C11.245 (3)C10—C111.494 (4)
O3—C121.231 (3)C11—H11A0.9600
O4—C121.286 (3)C11—H11B0.9600
O5—C181.266 (3)C11—H11C0.9600
O6—C181.231 (3)C12—C131.506 (4)
O7—H7D0.8500C13—C141.382 (4)
O7—H7E0.8500C14—C151.386 (4)
O8—H8A0.8500C14—H140.9300
O8—H8B0.8500C15—C161.382 (4)
O8—H8'A1.1315C15—H150.9300
O8—H8'B1.1478C16—C171.384 (4)
O8'—H8A1.1152C16—H160.9300
O8'—H8B1.0864C17—C181.527 (4)
N4—Ni1—N1177.69 (8)C5—C4—C3120.5 (2)
N4—Ni1—O199.98 (8)C5—C4—H4119.7
N1—Ni1—O178.32 (7)C3—C4—H4119.7
N4—Ni1—O579.21 (8)C4—C5—C6117.8 (2)
N1—Ni1—O5102.38 (7)C4—C5—H5121.1
O1—Ni1—O592.69 (8)C6—C5—H5121.1
N4—Ni1—N3104.83 (9)N1—C6—C5121.2 (2)
N1—Ni1—N376.78 (8)N1—C6—N2113.3 (2)
O1—Ni1—N3154.97 (8)C5—C6—N2125.4 (2)
O5—Ni1—N395.02 (8)C8—C7—H7A109.5
N4—Ni1—O375.95 (8)C8—C7—H7B109.5
N1—Ni1—O3102.36 (7)H7A—C7—H7B109.5
O1—Ni1—O388.72 (8)C8—C7—H7C109.5
O5—Ni1—O3154.99 (7)H7A—C7—H7C109.5
N3—Ni1—O394.14 (8)H7B—C7—H7C109.5
C6—N1—C2122.4 (2)C9—C8—N2105.7 (2)
C6—N1—Ni1120.33 (15)C9—C8—C7128.8 (3)
C2—N1—Ni1117.26 (16)N2—C8—C7125.5 (2)
C8—N2—N3110.9 (2)C8—C9—C10107.7 (2)
C8—N2—C6132.7 (2)C8—C9—H9126.2
N3—N2—C6116.48 (19)C10—C9—H9126.2
C10—N3—N2105.3 (2)N3—C10—C9110.4 (2)
C10—N3—Ni1141.53 (19)N3—C10—C11121.8 (3)
N2—N3—Ni1112.36 (14)C9—C10—C11127.8 (3)
C17—N4—C13121.4 (2)C10—C11—H11A109.5
C17—N4—Ni1117.36 (17)C10—C11—H11B109.5
C13—N4—Ni1121.21 (17)H11A—C11—H11B109.5
C1—O1—Ni1116.72 (16)C10—C11—H11C109.5
C12—O3—Ni1112.55 (17)H11A—C11—H11C109.5
C18—O5—Ni1115.55 (16)H11B—C11—H11C109.5
H7D—O7—H7E108.5O3—C12—O4125.8 (3)
H8A—O8—H8B108.4O3—C12—C13118.5 (2)
H8A—O8—H8'A32.4O4—C12—C13115.6 (2)
H8B—O8—H8'A96.6N4—C13—C14121.4 (2)
H8A—O8—H8'B98.1N4—C13—C12111.6 (2)
H8B—O8—H8'B30.6C14—C13—C12127.0 (2)
H8'A—O8—H8'B74.4C13—C14—C15117.6 (3)
H8A—O8'—H8B77.5C13—C14—H14121.2
H8A—O8'—H8'A33.1C15—C14—H14121.2
H8B—O8'—H8'A100.0C16—C15—C14120.2 (2)
H8A—O8'—H8'B100.6C16—C15—H15119.9
H8B—O8'—H8'B33.4C14—C15—H15119.9
H8'A—O8'—H8'B108.4C15—C16—C17119.0 (3)
O2—C1—O1125.5 (2)C15—C16—H16120.5
O2—C1—C2118.7 (2)C17—C16—H16120.5
O1—C1—C2115.8 (2)N4—C17—C16120.3 (2)
N1—C2—C3119.1 (2)N4—C17—C18113.0 (2)
N1—C2—C1111.90 (19)C16—C17—C18126.7 (2)
C3—C2—C1129.0 (2)O6—C18—O5126.6 (2)
C2—C3—C4119.0 (2)O6—C18—C17118.6 (2)
C2—C3—Cl1123.27 (19)O5—C18—C17114.8 (2)
C4—C3—Cl1117.74 (18)
O1—Ni1—N1—C6−177.34 (18)N1—C2—C3—C40.9 (3)
O5—Ni1—N1—C6−87.12 (18)C1—C2—C3—C4−176.9 (2)
N3—Ni1—N1—C65.20 (17)N1—C2—C3—Cl1−179.25 (17)
O3—Ni1—N1—C696.60 (17)C1—C2—C3—Cl13.0 (3)
O1—Ni1—N1—C21.49 (16)C2—C3—C4—C5−0.6 (3)
O5—Ni1—N1—C291.70 (17)Cl1—C3—C4—C5179.48 (18)
N3—Ni1—N1—C2−175.97 (18)C3—C4—C5—C60.1 (4)
O3—Ni1—N1—C2−84.57 (17)C2—N1—C6—C50.1 (3)
C8—N2—N3—C100.9 (3)Ni1—N1—C6—C5178.85 (17)
C6—N2—N3—C10−178.7 (2)C2—N1—C6—N2179.42 (19)
C8—N2—N3—Ni1−171.27 (16)Ni1—N1—C6—N2−1.8 (3)
C6—N2—N3—Ni19.1 (2)C4—C5—C6—N10.2 (3)
N4—Ni1—N3—C106.4 (3)C4—C5—C6—N2−179.1 (2)
N1—Ni1—N3—C10−175.3 (3)C8—N2—C6—N1175.4 (2)
O1—Ni1—N3—C10178.8 (2)N3—N2—C6—N1−5.2 (3)
O5—Ni1—N3—C10−73.8 (3)C8—N2—C6—C5−5.3 (4)
O3—Ni1—N3—C1083.0 (3)N3—N2—C6—C5174.1 (2)
N4—Ni1—N3—N2174.29 (15)N3—N2—C8—C9−0.9 (3)
N1—Ni1—N3—N2−7.43 (15)C6—N2—C8—C9178.6 (2)
O1—Ni1—N3—N2−13.3 (3)N3—N2—C8—C7177.1 (3)
O5—Ni1—N3—N294.14 (15)C6—N2—C8—C7−3.4 (4)
O3—Ni1—N3—N2−109.16 (15)N2—C8—C9—C100.6 (3)
O1—Ni1—N4—C1792.1 (2)C7—C8—C9—C10−177.4 (3)
O5—Ni1—N4—C171.28 (19)N2—N3—C10—C9−0.6 (3)
N3—Ni1—N4—C17−91.1 (2)Ni1—N3—C10—C9167.8 (2)
O3—Ni1—N4—C17178.3 (2)N2—N3—C10—C11178.6 (2)
O1—Ni1—N4—C13−87.7 (2)Ni1—N3—C10—C11−13.0 (4)
O5—Ni1—N4—C13−178.6 (2)C8—C9—C10—N30.0 (3)
N3—Ni1—N4—C1389.0 (2)C8—C9—C10—C11−179.1 (3)
O3—Ni1—N4—C13−1.6 (2)Ni1—O3—C12—O4−174.0 (2)
N4—Ni1—O1—C1176.92 (19)Ni1—O3—C12—C133.5 (3)
N1—Ni1—O1—C1−1.47 (19)C17—N4—C13—C141.8 (4)
O5—Ni1—O1—C1−103.56 (19)Ni1—N4—C13—C14−178.3 (2)
N3—Ni1—O1—C14.4 (3)C17—N4—C13—C12−176.2 (2)
O3—Ni1—O1—C1101.42 (19)Ni1—N4—C13—C123.7 (3)
N4—Ni1—O3—C12−1.21 (19)O3—C12—C13—N4−4.7 (4)
N1—Ni1—O3—C12177.16 (19)O4—C12—C13—N4173.0 (2)
O1—Ni1—O3—C1299.4 (2)O3—C12—C13—C14177.4 (3)
O5—Ni1—O3—C125.8 (3)O4—C12—C13—C14−4.9 (4)
N3—Ni1—O3—C12−105.5 (2)N4—C13—C14—C15−0.1 (5)
N4—Ni1—O5—C18−0.09 (19)C12—C13—C14—C15177.6 (3)
N1—Ni1—O5—C18−178.38 (19)C13—C14—C15—C16−1.4 (5)
O1—Ni1—O5—C18−99.8 (2)C14—C15—C16—C171.3 (5)
N3—Ni1—O5—C18104.1 (2)C13—N4—C17—C16−1.9 (4)
O3—Ni1—O5—C18−7.0 (3)Ni1—N4—C17—C16178.2 (2)
Ni1—O1—C1—O2178.6 (2)C13—N4—C17—C18177.8 (2)
Ni1—O1—C1—C21.2 (3)Ni1—N4—C17—C18−2.1 (3)
C6—N1—C2—C3−0.6 (3)C15—C16—C17—N40.4 (4)
Ni1—N1—C2—C3−179.41 (16)C15—C16—C17—C18−179.3 (3)
C6—N1—C2—C1177.5 (2)Ni1—O5—C18—O6−179.8 (2)
Ni1—N1—C2—C1−1.3 (2)Ni1—O5—C18—C17−0.9 (3)
O2—C1—C2—N1−177.6 (2)N4—C17—C18—O6−179.1 (2)
O1—C1—C2—N10.0 (3)C16—C17—C18—O60.6 (4)
O2—C1—C2—C30.3 (4)N4—C17—C18—O52.0 (3)
O1—C1—C2—C3177.9 (2)C16—C17—C18—O5−178.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7D···O20.851.812.655 (3)174
O7—H7E···O4i0.851.612.452 (3)173
O8—H8A···O60.851.912.763 (6)179
O8—H8B···O7ii0.851.772.623 (7)179
O8'—H8'A···O60.851.902.751 (7)180
O8'—H8'B···O7ii0.851.732.580 (7)180

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2060).

References

  • Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.
  • Costamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev.119, 67–88.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography