PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m189.
Published online 2007 December 12. doi:  10.1107/S1600536807065919
PMCID: PMC2915121

Diacetonitrile­[N,N′-bis­(3,4,5-trimethoxy­benzyl­idene)ethyl­enediamine]copper(I) perchlorate

Abstract

In the title compound, [Cu(C2H3N)2(C22H28N2O6)]ClO4, the Cu atom is coordinated by two N atoms from one bidentate Schiff base ligand and two N atoms from two acetonitrile groups. The Cu atom adopts a tetra­hedral geometry. The Cu—N(ligand) distances are 2.076 (3) and 2.089 (3) Å, and the Cu—N(acetonitrile) distances are 1.964 (4) and 1.975 (4) Å.

Related literature

For related literature, see: Amirnasr et al. (2006 [triangle]); Chowdhury et al. (2000 [triangle]); Dakin et al. (2000 [triangle]); Khalaji et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m189-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3N)2(C22H28N2O6)]ClO4
  • M r = 661.56
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m189-efi1.jpg
  • a = 9.869 (2) Å
  • b = 11.903 (3) Å
  • c = 14.904 (3) Å
  • α = 80.537 (4)°
  • β = 71.677 (4)°
  • γ = 68.285 (4)°
  • V = 1541.9 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 294 (2) K
  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.821, T max = 0.862
  • 8034 measured reflections
  • 5414 independent reflections
  • 3408 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.141
  • S = 1.01
  • 5414 reflections
  • 387 parameters
  • 34 restraints
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065919/bt2614sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065919/bt2614Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Copper(I) complexes have long been used in organic synthesis as catalyst (Dakin et al., 2000), and the design of supramolecular arrays (Amirnasr et al., 2006).

The coordination of the Cu atom is nearly tetrahedral (Fig. 1), with four N atoms, two from two acetonitrile groups and the other two from one bidentate Schiff base ligand (3,4,5-MeO-ba)2en, forming the CuN4 chromophore. Although a tetrahedral geometry is to be expected for a four-coordinated Cu(I) complexes, the geometry about the Cu(I) in this structure is distorted by the bite angle of the chelating ligand. The N(1)—Cu(1)—N(2) angle is 84.97 (13) and N(3)—Cu(1)—N(4) angle is 103.04 (16)° in this structure being smaller than the tetrahedral values, however, other angles are larger than the tetrahedral values, which posses approximate C2 local symmetry. The Cu—N bond lengths [Cu(1)—N(3), 1.964 (4); Cu(1)—N(4), 1.975 (4); Cu(1)—N(2), 2.076 (3) and Cu(1)—N(1) 2.089 (3) Å] agree well with the same distances in other tetrahedral copper(I) complexes (Chowdhury et al., 2000.; Dakin et al., 2000). The N(1)=C(7) and N(2)=C(13) bond lengths of 1.274 (5) and 1.277 (5) Å, respectively, conform to the value for a double bond, while the C(11)—N(1) and C(12)—N(2) bond lengths of 1.475 (5) and 1.468 (5) Å, respectively, conform to the value for a single bond and are comparable to the corresponding values observed in other tetrahedral copper(I) complexes (Chowdhury et al., 2000.; Dakin et al., 2000). The ligand adopts a Z,Z configuration in this structure.

Experimental

The N,N'-Bis(3,4,5-trimethoxybenzylidene)ethylenediamine (3,4,5-MeO-ba)2en) ligand was prepared as reported elsewhere (Khalaji et al., 2007). The reaction between [Cu(CH3CN)4]ClO4 (0.326 mg, 0.1 mol) and the (3,4,5-MeO-ba)2en ligand (0.416 g, 0.1 mol) in 10 ml CH3CN at room temperature lead to the formation of the copper(I) complex.

Refinement

All H atoms were positioned geometrically (C—H=0.93–0.97 Å), and refined as riding with Uiso(H)=1.2Ueq(carrier) or 1.5eq(methyl groups). All O—O distances of the ClO4- anion have been restrained to 2.35 (1) Å, and the Cl—O distances to 1.44 (1) Å. The displacement parameters of these O atoms have been restrained to an isotropic behaviour with an effective standard deviation of 0.01.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellopsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Crystal data

[Cu(C2H3N)2(C22H28N2O6)]ClO4Z = 2
Mr = 661.56F000 = 688
Triclinic, P1Dx = 1.425 Mg m3
a = 9.869 (2) ÅMo Kα radiation λ = 0.71073 Å
b = 11.903 (3) ÅCell parameters from 2161 reflections
c = 14.904 (3) Åθ = 2.3–22.6º
α = 80.537 (4)ºµ = 0.85 mm1
β = 71.677 (4)ºT = 294 (2) K
γ = 68.285 (4)ºBlock, blue
V = 1541.9 (6) Å30.24 × 0.22 × 0.18 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer5414 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 294(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→9
Tmin = 0.821, Tmax = 0.862k = −14→14
8034 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.141  w = 1/[σ2(Fo2) + (0.0591P)2 + 1.2218P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5414 reflectionsΔρmax = 0.62 e Å3
387 parametersΔρmin = −0.37 e Å3
34 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.16626 (7)0.63549 (5)0.25396 (4)0.0508 (2)
O10.3716 (4)0.9169 (3)0.3552 (2)0.0588 (9)
O20.5608 (4)0.8412 (3)0.4633 (2)0.0591 (9)
O30.7220 (4)0.6058 (3)0.4854 (2)0.0602 (9)
O4−0.3452 (4)0.5705 (3)0.0206 (2)0.0612 (9)
O5−0.4326 (3)0.8102 (3)0.0469 (2)0.0612 (9)
O6−0.3194 (4)0.8895 (3)0.1522 (2)0.0575 (8)
N10.3752 (4)0.5043 (3)0.2585 (2)0.0410 (8)
N20.1072 (4)0.4906 (3)0.2395 (2)0.0419 (8)
N30.0368 (5)0.7333 (4)0.3633 (3)0.0572 (10)
N40.1843 (5)0.7587 (4)0.1488 (3)0.0563 (10)
C10.4243 (5)0.7104 (4)0.3181 (3)0.0429 (10)
H10.35720.73560.28090.051*
C20.4436 (5)0.7945 (4)0.3627 (3)0.0430 (10)
C30.5417 (5)0.7562 (4)0.4204 (3)0.0454 (11)
C40.6249 (5)0.6343 (4)0.4300 (3)0.0445 (11)
C50.6075 (5)0.5508 (4)0.3837 (3)0.0413 (10)
H50.66430.46920.38900.050*
C60.5055 (4)0.5889 (4)0.3293 (3)0.0390 (10)
C70.4868 (5)0.4930 (4)0.2891 (3)0.0414 (10)
H70.56270.41750.28560.050*
C80.2938 (6)0.9615 (4)0.2841 (4)0.0693 (15)
H8A0.36060.93020.22450.104*
H8B0.26111.04830.27920.104*
H8C0.20700.93590.30060.104*
C90.4800 (7)0.8526 (5)0.5606 (3)0.0781 (17)
H9A0.37370.87250.56780.117*
H9B0.49540.91560.58470.117*
H9C0.51620.77740.59520.117*
C100.8171 (5)0.4835 (5)0.4891 (4)0.0629 (14)
H10A0.75600.43300.51540.094*
H10B0.88220.47420.52800.094*
H10C0.87780.46010.42630.094*
C110.3764 (5)0.3933 (4)0.2262 (3)0.0454 (11)
H11A0.45200.32310.24620.054*
H11B0.40170.39720.15760.054*
C120.2208 (5)0.3823 (4)0.2684 (3)0.0484 (11)
H12A0.21860.31070.24660.058*
H12B0.19790.37440.33680.058*
C130.0175 (5)0.4718 (4)0.2024 (3)0.0438 (10)
H130.02890.39150.19860.053*
C14−0.1009 (5)0.5636 (4)0.1656 (3)0.0415 (10)
C15−0.1659 (5)0.5225 (4)0.1129 (3)0.0463 (11)
H15−0.13540.44010.10480.056*
C16−0.2752 (5)0.6037 (4)0.0728 (3)0.0459 (11)
C17−0.3221 (5)0.7267 (4)0.0850 (3)0.0472 (11)
C18−0.2617 (5)0.7676 (4)0.1413 (3)0.0439 (10)
C19−0.1508 (5)0.6868 (4)0.1807 (3)0.0437 (10)
H19−0.10960.71440.21720.052*
C20−0.3010 (6)0.4441 (5)0.0093 (4)0.0627 (14)
H20A−0.19540.4137−0.02450.094*
H20B−0.36030.4312−0.02550.094*
H20C−0.31740.40240.07050.094*
C21−0.3830 (7)0.8362 (5)−0.0515 (4)0.0844 (18)
H21A−0.28350.8417−0.06720.127*
H21B−0.45210.9118−0.06880.127*
H21C−0.37970.7728−0.08540.127*
C22−0.2715 (6)0.9347 (4)0.2153 (4)0.0640 (14)
H22A−0.29700.89690.27740.096*
H22B−0.32151.02070.21790.096*
H22C−0.16360.91680.19320.096*
C230.1908 (6)0.8331 (5)0.0939 (4)0.0683 (15)
C240.1990 (9)0.9299 (7)0.0201 (6)0.140 (3)
H24A0.14830.9267−0.02440.211*
H24B0.30340.9196−0.01210.211*
H24C0.15071.00690.04840.211*
C25−0.0322 (6)0.7962 (5)0.4216 (4)0.0623 (13)
C26−0.1195 (9)0.8770 (7)0.4981 (5)0.122 (3)
H26A−0.05300.88310.53080.183*
H26B−0.19410.84580.54150.183*
H26C−0.16940.95580.47280.183*
Cl10.90012 (16)0.16995 (12)0.24864 (12)0.0791 (5)
O70.7647 (5)0.2159 (4)0.2193 (4)0.1252 (17)
O80.8825 (8)0.2455 (5)0.3203 (4)0.171 (2)
O90.9177 (5)0.0509 (3)0.2878 (4)0.1263 (18)
O101.0251 (6)0.1770 (5)0.1751 (4)0.181 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0576 (4)0.0406 (3)0.0556 (4)−0.0112 (3)−0.0229 (3)−0.0059 (3)
O10.073 (2)0.0404 (18)0.062 (2)−0.0110 (16)−0.0250 (18)−0.0062 (15)
O20.086 (2)0.061 (2)0.0467 (19)−0.0406 (18)−0.0180 (18)−0.0074 (16)
O30.070 (2)0.061 (2)0.065 (2)−0.0230 (18)−0.0396 (19)−0.0019 (17)
O40.060 (2)0.067 (2)0.069 (2)−0.0138 (17)−0.0355 (18)−0.0186 (17)
O50.0487 (19)0.072 (2)0.053 (2)−0.0032 (17)−0.0211 (17)−0.0051 (17)
O60.064 (2)0.0464 (19)0.062 (2)−0.0118 (16)−0.0244 (18)−0.0060 (16)
N10.046 (2)0.041 (2)0.041 (2)−0.0138 (16)−0.0177 (17)−0.0072 (16)
N20.046 (2)0.040 (2)0.045 (2)−0.0157 (17)−0.0179 (18)−0.0002 (16)
N30.062 (3)0.053 (2)0.054 (3)−0.012 (2)−0.017 (2)−0.009 (2)
N40.062 (3)0.051 (2)0.057 (3)−0.019 (2)−0.021 (2)−0.001 (2)
C10.041 (2)0.047 (3)0.043 (3)−0.016 (2)−0.017 (2)0.000 (2)
C20.044 (2)0.039 (2)0.043 (3)−0.014 (2)−0.007 (2)−0.0030 (19)
C30.059 (3)0.050 (3)0.035 (2)−0.030 (2)−0.011 (2)−0.002 (2)
C40.048 (3)0.053 (3)0.039 (2)−0.024 (2)−0.015 (2)0.003 (2)
C50.040 (2)0.039 (2)0.046 (3)−0.0119 (19)−0.017 (2)−0.0001 (19)
C60.037 (2)0.043 (2)0.036 (2)−0.0124 (19)−0.009 (2)−0.0067 (19)
C70.040 (2)0.037 (2)0.045 (3)−0.0072 (19)−0.013 (2)−0.0063 (19)
C80.078 (4)0.043 (3)0.079 (4)−0.005 (3)−0.034 (3)0.005 (3)
C90.112 (5)0.076 (4)0.052 (3)−0.038 (4)−0.016 (3)−0.018 (3)
C100.050 (3)0.081 (4)0.057 (3)−0.013 (3)−0.024 (3)−0.005 (3)
C110.047 (3)0.041 (2)0.051 (3)−0.010 (2)−0.020 (2)−0.010 (2)
C120.059 (3)0.038 (2)0.056 (3)−0.014 (2)−0.031 (2)0.001 (2)
C130.047 (3)0.041 (2)0.049 (3)−0.020 (2)−0.015 (2)−0.003 (2)
C140.039 (2)0.046 (3)0.042 (2)−0.016 (2)−0.012 (2)−0.002 (2)
C150.042 (3)0.051 (3)0.050 (3)−0.016 (2)−0.014 (2)−0.008 (2)
C160.040 (3)0.062 (3)0.039 (2)−0.018 (2)−0.011 (2)−0.012 (2)
C170.040 (3)0.059 (3)0.038 (2)−0.011 (2)−0.010 (2)−0.006 (2)
C180.042 (3)0.046 (3)0.040 (2)−0.013 (2)−0.006 (2)−0.007 (2)
C190.046 (3)0.050 (3)0.040 (2)−0.020 (2)−0.011 (2)−0.006 (2)
C200.066 (3)0.073 (4)0.063 (3)−0.028 (3)−0.026 (3)−0.017 (3)
C210.091 (4)0.086 (4)0.054 (4)−0.005 (3)−0.024 (3)0.006 (3)
C220.079 (4)0.051 (3)0.067 (3)−0.023 (3)−0.020 (3)−0.011 (3)
C230.058 (3)0.074 (4)0.072 (4)−0.026 (3)−0.020 (3)0.013 (3)
C240.127 (7)0.140 (7)0.138 (7)−0.061 (6)−0.040 (6)0.082 (6)
C250.064 (3)0.059 (3)0.061 (3)−0.015 (3)−0.018 (3)−0.008 (3)
C260.122 (6)0.130 (6)0.088 (5)−0.010 (5)−0.003 (4)−0.061 (5)
Cl10.0556 (8)0.0482 (8)0.1228 (13)−0.0165 (6)−0.0139 (9)0.0000 (8)
O70.096 (3)0.092 (3)0.170 (5)−0.005 (3)−0.056 (3)0.015 (3)
O80.241 (6)0.128 (4)0.180 (5)−0.090 (4)−0.064 (5)−0.029 (4)
O90.115 (4)0.062 (3)0.216 (5)−0.036 (3)−0.077 (4)0.029 (3)
O100.120 (4)0.152 (5)0.209 (6)−0.055 (4)0.053 (4)−0.015 (4)

Geometric parameters (Å, °)

Cu1—N31.964 (4)C10—H10B0.9600
Cu1—N41.975 (4)C10—H10C0.9600
Cu1—N22.076 (3)C11—C121.511 (6)
Cu1—N12.089 (3)C11—H11A0.9700
O1—C21.367 (5)C11—H11B0.9700
O1—C81.422 (5)C12—H12A0.9700
O2—C31.377 (5)C12—H12B0.9700
O2—C91.420 (6)C13—C141.456 (6)
O3—C41.372 (5)C13—H130.9300
O3—C101.414 (6)C14—C151.394 (6)
O4—C161.372 (5)C14—C191.395 (6)
O4—C201.425 (5)C15—C161.378 (6)
O5—C171.379 (5)C15—H150.9300
O5—C211.413 (6)C16—C171.386 (6)
O6—C181.366 (5)C17—C181.400 (6)
O6—C221.426 (5)C18—C191.382 (6)
N1—C71.274 (5)C19—H190.9300
N1—C111.475 (5)C20—H20A0.9600
N2—C131.277 (5)C20—H20B0.9600
N2—C121.468 (5)C20—H20C0.9600
N3—C251.115 (6)C21—H21A0.9600
N4—C231.108 (6)C21—H21B0.9600
C1—C61.382 (6)C21—H21C0.9600
C1—C21.385 (6)C22—H22A0.9600
C1—H10.9300C22—H22B0.9600
C2—C31.398 (6)C22—H22C0.9600
C3—C41.387 (6)C23—C241.463 (8)
C4—C51.385 (6)C24—H24A0.9600
C5—C61.390 (5)C24—H24B0.9600
C5—H50.9300C24—H24C0.9600
C6—C71.465 (5)C25—C261.449 (8)
C7—H70.9300C26—H26A0.9600
C8—H8A0.9600C26—H26B0.9600
C8—H8B0.9600C26—H26C0.9600
C8—H8C0.9600Cl1—O101.387 (4)
C9—H9A0.9600Cl1—O91.410 (4)
C9—H9B0.9600Cl1—O71.422 (4)
C9—H9C0.9600Cl1—O81.436 (4)
C10—H10A0.9600
N3—Cu1—N4103.04 (16)N2—C12—C11109.3 (3)
N3—Cu1—N2115.70 (15)N2—C12—H12A109.8
N4—Cu1—N2120.15 (14)C11—C12—H12A109.8
N3—Cu1—N1120.65 (14)N2—C12—H12B109.8
N4—Cu1—N1112.89 (15)C11—C12—H12B109.8
N2—Cu1—N184.97 (13)H12A—C12—H12B108.3
C2—O1—C8117.0 (3)N2—C13—C14126.6 (4)
C3—O2—C9114.4 (4)N2—C13—H13116.7
C4—O3—C10116.4 (3)C14—C13—H13116.7
C16—O4—C20116.7 (4)C15—C14—C19119.9 (4)
C17—O5—C21114.5 (4)C15—C14—C13116.3 (4)
C18—O6—C22117.5 (4)C19—C14—C13123.8 (4)
C7—N1—C11115.9 (3)C16—C15—C14120.1 (4)
C7—N1—Cu1137.8 (3)C16—C15—H15119.9
C11—N1—Cu1105.8 (2)C14—C15—H15119.9
C13—N2—C12116.2 (3)O4—C16—C15123.6 (4)
C13—N2—Cu1137.6 (3)O4—C16—C17115.9 (4)
C12—N2—Cu1105.3 (2)C15—C16—C17120.4 (4)
C25—N3—Cu1174.3 (4)O5—C17—C16121.9 (4)
C23—N4—Cu1175.7 (4)O5—C17—C18118.5 (4)
C6—C1—C2119.5 (4)C16—C17—C18119.5 (4)
C6—C1—H1120.2O6—C18—C19124.5 (4)
C2—C1—H1120.2O6—C18—C17115.2 (4)
O1—C2—C1124.6 (4)C19—C18—C17120.3 (4)
O1—C2—C3115.3 (4)C18—C19—C14119.7 (4)
C1—C2—C3120.1 (4)C18—C19—H19120.2
O2—C3—C4120.6 (4)C14—C19—H19120.2
O2—C3—C2119.3 (4)O4—C20—H20A109.5
C4—C3—C2120.0 (4)O4—C20—H20B109.5
O3—C4—C5124.6 (4)H20A—C20—H20B109.5
O3—C4—C3115.8 (4)O4—C20—H20C109.5
C5—C4—C3119.6 (4)H20A—C20—H20C109.5
C4—C5—C6120.2 (4)H20B—C20—H20C109.5
C4—C5—H5119.9O5—C21—H21A109.5
C6—C5—H5119.9O5—C21—H21B109.5
C1—C6—C5120.5 (4)H21A—C21—H21B109.5
C1—C6—C7123.4 (4)O5—C21—H21C109.5
C5—C6—C7116.0 (4)H21A—C21—H21C109.5
N1—C7—C6125.5 (4)H21B—C21—H21C109.5
N1—C7—H7117.2O6—C22—H22A109.5
C6—C7—H7117.2O6—C22—H22B109.5
O1—C8—H8A109.5H22A—C22—H22B109.5
O1—C8—H8B109.5O6—C22—H22C109.5
H8A—C8—H8B109.5H22A—C22—H22C109.5
O1—C8—H8C109.5H22B—C22—H22C109.5
H8A—C8—H8C109.5N4—C23—C24178.9 (7)
H8B—C8—H8C109.5C23—C24—H24A109.5
O2—C9—H9A109.5C23—C24—H24B109.5
O2—C9—H9B109.5H24A—C24—H24B109.5
H9A—C9—H9B109.5C23—C24—H24C109.5
O2—C9—H9C109.5H24A—C24—H24C109.5
H9A—C9—H9C109.5H24B—C24—H24C109.5
H9B—C9—H9C109.5N3—C25—C26178.9 (6)
O3—C10—H10A109.5C25—C26—H26A109.5
O3—C10—H10B109.5C25—C26—H26B109.5
H10A—C10—H10B109.5H26A—C26—H26B109.5
O3—C10—H10C109.5C25—C26—H26C109.5
H10A—C10—H10C109.5H26A—C26—H26C109.5
H10B—C10—H10C109.5H26B—C26—H26C109.5
N1—C11—C12108.6 (3)O10—Cl1—O9112.7 (3)
N1—C11—H11A110.0O10—Cl1—O7111.7 (4)
C12—C11—H11A110.0O9—Cl1—O7108.6 (3)
N1—C11—H11B110.0O10—Cl1—O8106.8 (4)
C12—C11—H11B110.0O9—Cl1—O8109.3 (3)
H11A—C11—H11B108.4O7—Cl1—O8107.5 (3)
N3—Cu1—N1—C7−40.7 (5)C4—C5—C6—C7−175.5 (4)
N4—Cu1—N1—C781.7 (5)C11—N1—C7—C6−176.6 (4)
N2—Cu1—N1—C7−157.7 (4)Cu1—N1—C7—C6−6.1 (7)
N3—Cu1—N1—C11130.4 (3)C1—C6—C7—N1−16.5 (7)
N4—Cu1—N1—C11−107.2 (3)C5—C6—C7—N1161.2 (4)
N2—Cu1—N1—C1113.5 (3)C7—N1—C11—C12133.0 (4)
N3—Cu1—N2—C1386.2 (5)Cu1—N1—C11—C12−40.4 (4)
N4—Cu1—N2—C13−38.5 (5)C13—N2—C12—C11128.1 (4)
N1—Cu1—N2—C13−152.1 (5)Cu1—N2—C12—C11−43.2 (4)
N3—Cu1—N2—C12−105.5 (3)N1—C11—C12—N258.1 (4)
N4—Cu1—N2—C12129.8 (3)C12—N2—C13—C14−177.9 (4)
N1—Cu1—N2—C1216.2 (3)Cu1—N2—C13—C14−10.5 (7)
N4—Cu1—N3—C25−27 (4)N2—C13—C14—C15168.6 (4)
N2—Cu1—N3—C25−160 (4)N2—C13—C14—C19−11.8 (7)
N1—Cu1—N3—C25100 (4)C19—C14—C15—C162.5 (6)
N3—Cu1—N4—C2313 (6)C13—C14—C15—C16−177.9 (4)
N2—Cu1—N4—C23143 (6)C20—O4—C16—C150.7 (6)
N1—Cu1—N4—C23−119 (6)C20—O4—C16—C17−178.5 (4)
C8—O1—C2—C1−11.7 (6)C14—C15—C16—O4−179.6 (4)
C8—O1—C2—C3168.5 (4)C14—C15—C16—C17−0.4 (7)
C6—C1—C2—O1178.7 (4)C21—O5—C17—C16−76.3 (6)
C6—C1—C2—C3−1.6 (6)C21—O5—C17—C18106.9 (5)
C9—O2—C3—C4−81.4 (5)O4—C16—C17—O50.1 (6)
C9—O2—C3—C2102.2 (5)C15—C16—C17—O5−179.1 (4)
O1—C2—C3—O2−1.0 (6)O4—C16—C17—C18176.9 (4)
C1—C2—C3—O2179.2 (4)C15—C16—C17—C18−2.4 (7)
O1—C2—C3—C4−177.5 (4)C22—O6—C18—C19−5.9 (6)
C1—C2—C3—C42.8 (6)C22—O6—C18—C17174.7 (4)
C10—O3—C4—C54.6 (6)O5—C17—C18—O6−0.6 (6)
C10—O3—C4—C3−174.6 (4)C16—C17—C18—O6−177.4 (4)
O2—C3—C4—O31.4 (6)O5—C17—C18—C19180.0 (4)
C2—C3—C4—O3177.8 (4)C16—C17—C18—C193.2 (6)
O2—C3—C4—C5−177.9 (4)O6—C18—C19—C14179.5 (4)
C2—C3—C4—C5−1.4 (6)C17—C18—C19—C14−1.1 (6)
O3—C4—C5—C6179.8 (4)C15—C14—C19—C18−1.7 (6)
C3—C4—C5—C6−1.1 (6)C13—C14—C19—C18178.7 (4)
C2—C1—C6—C5−0.9 (6)Cu1—N4—C23—C24−151 (34)
C2—C1—C6—C7176.6 (4)Cu1—N3—C25—C26−87 (36)
C4—C5—C6—C12.3 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2614).

References

  • Amirnasr, M., Khalaji, A. D. & Falvello, L. R. (2006). Inorg. Chim. Acta, 359, 713–717.
  • Bruker (1997). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chowdhury, S., Patra, G. K., Drew, M. G. B., Chattopadhyay, N. & Datta, D. (2000). J. Chem. Soc. Dalton Trans. pp. 235–237.
  • Dakin, L. A., Ong, P. C., Panek, J. S., Staples, R. J. & Stavropoulos, P. (2000). Organometallics, 19, 2896–2908.
  • Khalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography