PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m187–m188.
Published online 2007 December 18. doi:  10.1107/S1600536807066032
PMCID: PMC2915120

Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hexa­aqua­cobalt(II) bis­[bis­(pyridine-2,6-dicarboxyl­ato)cobaltate(II)] tetra­hydrate

Abstract

The title compound, (C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2O, or (tataH)2[Co(H2O)6][Co(pydc)2]2·4H2O (where tata is 2,4,6-triamino-1,3,5-triazine and pydc is pyridine-2,6-dicarboxylic acid), was obtained by reaction of Co(NO3)2·6H2O with the proton-transfer compound (tataH)2(pydc) in aqueous solution. The [Co(pydc)2]2− anion is a six-coordinate CoII complex with a distorted octa­hedral coordination geometry. The structure also contains hexa­aqua­cobalt(II) cations (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-64-0m187-efi1.jpg), (tataH)+ cations and uncoordinated water mol­ecules. The two(pydc)2− ligands in each [Co(pydc)2]2− anion are almost perpendicular to each other [dihedral angle between their mean planes = 82.3 (1)°]. There is extensive O—H(...)O, N—H(...)N, O—H(...)N and C—H(...)O hydrogen bonding in the structure, as well as π–π stacking between (pydc)2− ligands with an inter­planar distance of 3.484 (15) Å.

Related literature

For related literature, see: Aghabozorg, Attar Gharamaleki et al. (2007 [triangle]); Aghabozorg, Daneshvar et al. (2007 [triangle]); Sheshmani et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m187-scheme1.jpg

Experimental

Crystal data

  • (C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2O
  • M r = 1271.66
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m187-efi2.jpg
  • a = 8.4003 (6) Å
  • b = 11.3014 (7) Å
  • c = 13.8794 (10) Å
  • α = 95.901 (6)°
  • β = 106.017 (5)°
  • γ = 107.133 (5)°
  • V = 1185.73 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 120 (2) K
  • 0.50 × 0.50 × 0.45 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2004 [triangle]) T min = 0.570, T max = 0.595
  • 14236 measured reflections
  • 6289 independent reflections
  • 6111 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.071
  • S = 1.06
  • 6289 reflections
  • 426 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066032/bi2263sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066032/bi2263Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from Teacher Training University is gratefully acknowledged.

supplementary crystallographic information

Comment

Recently, we have reported the reactions between Co(NO3)2.6H2O and two proton-transfer compounds: (GH)2(pydc) (where G is guanidine) and (pipzH2)(pydc) (where pipz is piperazine) in a 1:2 molar ratio. These reactions lead to the formation of the complexes (GH)2[Co(H2O)6][Co(pydc)2]2 (Sheshmani et al., 2006) and (pipzH2)[Co(H2O)6][Co(pydc)2]2.8H2O (Aghabozorg, Attar Gharamaleki et al., 2007), respectively.

Here, we report the synthesis and X-ray crystal structure of the title compound (Fig. 1). The compound contains [Co(pydc)2]2- anions, [Co(H2O)6]2+ cations (site symmetry 1), and (tataH)+ cations. In the [Co(pydc)2]2- anions, the CoII atom is hexacoordinated by two N atoms (N1 and N2) and four O atoms (O1, O3, O5 and O7) from the carboxylate groups of two (pydc)2- groups that act as tridentate ligands. The coordination geometry is distorted octahedral, with atoms N1 and N2 occupying axial positions and the O atoms forming the equatorial plane. The N1—Co2—N2 angle deviates ca 7.7° from linearity. The mean Co—N and Co—O bond lengths for Co1 are 2.0214 (11) and 2.1658 (10) Å, respectively, consistent with similar complexes in the literature. The dihedral angle between the mean planes of the two (pydc)2- groups is 82.3 (1)°.

There is extensive O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonding in the structure, as well as π–π stacking between (pydc)2- ligands with an interplanar distance of 3.484 (15) Å (symmetry operator: -x, -y + 1, -z + 1). Atom O8 of the C14?O8 carboxyl group lies above the N2/C9–C13 ring with an O···centroid distance of 3.240 (1) Å (symmetry operator: x, -y + 1, -z).

Experimental

The proton-transfer compound, (tataH)2(pydc), was prepared by the reaction of pyridine-2,6-dicarboxylic acid (pydcH2) with 2,4,6-triamino-1,3,5-triazine (tata). The reaction between Co(NO3)2.6H2O (115 mg, 0.5 mmol) in water (20 ml) and (tataH)2(pydc) (420 mg, 1.0 mmol) in water (20 ml), in a 1:2 molar ratio gave a violet crystalline compound after slow evaporation of the solvent at room temperature.

Refinement

The N-bound and O-bound H atoms were located in difference Fourier maps and their positions were freely refined. Other H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Water molecules are omitted. The suffix a denotes atoms generated by the symmetry operator -x, -y, -z + 1.
Fig. 2.
π···π Stacking interaction between two aromatic rings of (pydc)2- units, with interplanar distance of 3.484 (15) Å [-x, -y + 1, -z + 1]; C—O···π stacking interactions ...
Fig. 3.
Unit cell packing. Hydrogen bonds are shown as dashed lines.

Crystal data

(C3H7N6)2[Co(H2O)6][Co(C7H3NO4)2]2·4H2OZ = 1
Mr = 1271.66F000 = 651
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.4003 (6) ÅCell parameters from 2500 reflections
b = 11.3014 (7) Åθ = 1.9–29.2º
c = 13.8794 (10) ŵ = 1.15 mm1
α = 95.901 (6)ºT = 120 (2) K
β = 106.017 (5)ºBlock, violet
γ = 107.133 (5)º0.50 × 0.50 × 0.45 mm
V = 1185.73 (14) Å3

Data collection

Stoe IPDSII diffractometer6289 independent reflections
Radiation source: fine-focus sealed tube6111 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 120(2) Kθmax = 29.2º
[var phi] scansθmin = 1.9º
Absorption correction: numerical(X-SHAPE; Stoe & Cie, 2004)h = −11→11
Tmin = 0.570, Tmax = 0.595k = −15→15
14236 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071  w = 1/[σ2(Fo2) + (0.0323P)2 + 1.0178P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.019
6289 reflectionsΔρmax = 0.48 e Å3
426 parametersΔρmin = −0.89 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.09807 (17)0.59767 (12)0.39201 (10)0.0120 (2)
C20.19794 (16)0.52881 (12)0.46046 (9)0.0100 (2)
C30.26752 (17)0.56041 (12)0.56675 (10)0.0120 (2)
H3A0.25200.62730.60350.014*
C40.36138 (17)0.48851 (12)0.61643 (10)0.0123 (2)
H40.40870.50680.68740.015*
C50.38413 (17)0.38926 (12)0.55950 (10)0.0110 (2)
H5A0.44810.34160.59170.013*
C60.30917 (16)0.36313 (11)0.45369 (9)0.0092 (2)
C70.32416 (16)0.26121 (11)0.37973 (10)0.0099 (2)
C8−0.23329 (17)0.17773 (12)0.16471 (10)0.0110 (2)
C9−0.17660 (16)0.21879 (12)0.07477 (10)0.0102 (2)
C10−0.26571 (17)0.16132 (12)−0.02722 (10)0.0118 (2)
H10A−0.36940.0926−0.04600.014*
C11−0.19517 (17)0.20971 (12)−0.10097 (10)0.0125 (2)
H11A−0.25240.1736−0.17000.015*
C12−0.03839 (17)0.31260 (12)−0.07062 (10)0.0118 (2)
H12A0.00960.3464−0.11880.014*
C130.04411 (16)0.36325 (11)0.03343 (9)0.0096 (2)
C140.21779 (16)0.47113 (12)0.08186 (10)0.0102 (2)
C150.34004 (16)0.22483 (12)0.01662 (10)0.0102 (2)
C160.12106 (17)0.07415 (12)−0.11206 (10)0.0112 (2)
C170.33515 (17)0.21334 (12)−0.15514 (10)0.0111 (2)
N10.21838 (14)0.43202 (10)0.40734 (8)0.00895 (19)
N2−0.02564 (14)0.31650 (10)0.10290 (8)0.00952 (19)
N30.41635 (16)0.28384 (11)0.11324 (9)0.0126 (2)
H3B0.504 (3)0.349 (2)0.1304 (17)0.027 (5)*
H3C0.370 (3)0.258 (2)0.1568 (17)0.021 (5)*
N40.19481 (15)0.12353 (10)−0.01054 (8)0.0114 (2)
N5−0.02803 (16)−0.02294 (11)−0.14102 (9)0.0145 (2)
H5B−0.079 (3)−0.057 (2)−0.2023 (19)0.029 (6)*
H5C−0.073 (3)−0.049 (2)−0.0984 (18)0.025 (5)*
N60.18535 (15)0.11571 (11)−0.18643 (8)0.0118 (2)
N70.41327 (17)0.25597 (11)−0.22155 (9)0.0142 (2)
H7A0.369 (3)0.218 (2)−0.2810 (17)0.022 (5)*
H7B0.497 (3)0.320 (2)−0.2040 (17)0.022 (5)*
N80.41245 (15)0.27160 (11)−0.05467 (8)0.0113 (2)
H80.504 (3)0.337 (2)−0.0403 (19)0.034 (6)*
O10.04288 (13)0.54960 (9)0.29686 (7)0.01419 (18)
O20.07887 (16)0.69381 (10)0.43161 (8)0.0199 (2)
O30.26322 (13)0.26350 (9)0.28504 (7)0.01189 (17)
O40.39502 (13)0.18586 (9)0.41537 (8)0.01399 (18)
O5−0.12884 (13)0.24112 (9)0.25325 (7)0.01391 (18)
O6−0.37131 (13)0.08811 (10)0.14719 (8)0.01572 (19)
O70.27238 (12)0.50218 (9)0.17825 (7)0.01198 (17)
O80.29441 (13)0.52186 (9)0.02292 (7)0.01449 (18)
O90.04230 (14)−0.08822 (10)0.37722 (8)0.01480 (19)
H9A−0.024 (4)−0.097 (3)0.322 (2)0.043 (7)*
H9B0.053 (3)−0.162 (3)0.381 (2)0.043 (7)*
O10−0.27658 (13)−0.08879 (9)0.43229 (8)0.01282 (18)
H10B−0.331 (3)−0.047 (2)0.404 (2)0.035 (6)*
H10C−0.321 (3)−0.116 (2)0.4736 (19)0.032 (6)*
O11−0.02330 (13)0.15266 (9)0.42733 (8)0.01306 (18)
H11B−0.071 (3)0.158 (2)0.370 (2)0.033 (6)*
H11C−0.044 (3)0.207 (2)0.4624 (18)0.028 (6)*
O12−0.47942 (15)0.01920 (11)0.31460 (9)0.0196 (2)
H12B−0.512 (3)0.069 (2)0.340 (2)0.036 (6)*
H12C−0.443 (3)0.048 (2)0.268 (2)0.033 (6)*
O130.29453 (14)0.49240 (11)−0.16999 (8)0.0180 (2)
H13A0.205 (4)0.480 (2)−0.210 (2)0.039 (7)*
H13B0.277 (3)0.488 (2)−0.115 (2)0.037 (6)*
Co10.10510 (2)0.385862 (16)0.253625 (12)0.00886 (5)
Co20.00000.00000.50000.01165 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0127 (5)0.0121 (5)0.0124 (6)0.0050 (4)0.0048 (4)0.0029 (4)
C20.0104 (5)0.0095 (5)0.0101 (5)0.0027 (4)0.0042 (4)0.0016 (4)
C30.0132 (5)0.0119 (5)0.0100 (5)0.0032 (4)0.0047 (4)−0.0005 (4)
C40.0133 (5)0.0131 (5)0.0086 (5)0.0016 (4)0.0039 (4)0.0011 (4)
C50.0112 (5)0.0108 (5)0.0101 (5)0.0022 (4)0.0032 (4)0.0037 (4)
C60.0094 (5)0.0083 (5)0.0096 (5)0.0019 (4)0.0039 (4)0.0018 (4)
C70.0100 (5)0.0087 (5)0.0111 (5)0.0019 (4)0.0049 (4)0.0017 (4)
C80.0118 (5)0.0109 (5)0.0111 (5)0.0045 (4)0.0037 (4)0.0034 (4)
C90.0107 (5)0.0094 (5)0.0108 (5)0.0036 (4)0.0034 (4)0.0023 (4)
C100.0110 (5)0.0107 (5)0.0120 (6)0.0029 (4)0.0019 (4)0.0015 (4)
C110.0137 (6)0.0137 (6)0.0082 (5)0.0046 (5)0.0012 (4)0.0001 (4)
C120.0133 (6)0.0131 (6)0.0089 (5)0.0044 (5)0.0035 (4)0.0022 (4)
C130.0104 (5)0.0092 (5)0.0092 (5)0.0034 (4)0.0029 (4)0.0018 (4)
C140.0108 (5)0.0087 (5)0.0108 (5)0.0032 (4)0.0036 (4)0.0015 (4)
C150.0116 (5)0.0102 (5)0.0104 (5)0.0055 (4)0.0040 (4)0.0024 (4)
C160.0129 (5)0.0092 (5)0.0118 (6)0.0045 (4)0.0036 (4)0.0020 (4)
C170.0132 (5)0.0107 (5)0.0103 (5)0.0054 (4)0.0039 (4)0.0018 (4)
N10.0094 (4)0.0086 (4)0.0083 (4)0.0019 (4)0.0032 (4)0.0015 (4)
N20.0105 (5)0.0094 (4)0.0084 (4)0.0034 (4)0.0026 (4)0.0017 (4)
N30.0137 (5)0.0129 (5)0.0095 (5)0.0021 (4)0.0039 (4)0.0012 (4)
N40.0123 (5)0.0107 (5)0.0098 (5)0.0024 (4)0.0032 (4)0.0015 (4)
N50.0147 (5)0.0131 (5)0.0115 (5)−0.0002 (4)0.0039 (4)0.0000 (4)
N60.0131 (5)0.0113 (5)0.0094 (5)0.0025 (4)0.0032 (4)0.0014 (4)
N70.0169 (5)0.0126 (5)0.0103 (5)0.0003 (4)0.0059 (4)0.0005 (4)
N80.0115 (5)0.0113 (5)0.0092 (5)0.0013 (4)0.0038 (4)0.0008 (4)
O10.0176 (5)0.0155 (4)0.0107 (4)0.0089 (4)0.0033 (4)0.0020 (3)
O20.0300 (6)0.0169 (5)0.0167 (5)0.0149 (4)0.0067 (4)0.0016 (4)
O30.0142 (4)0.0128 (4)0.0088 (4)0.0053 (3)0.0035 (3)0.0011 (3)
O40.0184 (5)0.0137 (4)0.0146 (4)0.0089 (4)0.0078 (4)0.0057 (3)
O50.0141 (4)0.0150 (4)0.0096 (4)0.0009 (4)0.0034 (3)0.0028 (3)
O60.0131 (4)0.0149 (4)0.0155 (4)−0.0006 (4)0.0049 (4)0.0029 (4)
O70.0126 (4)0.0122 (4)0.0092 (4)0.0018 (3)0.0033 (3)0.0015 (3)
O80.0157 (4)0.0147 (4)0.0110 (4)0.0005 (4)0.0061 (4)0.0026 (3)
O90.0201 (5)0.0161 (5)0.0092 (4)0.0093 (4)0.0034 (4)0.0011 (4)
O100.0156 (4)0.0126 (4)0.0115 (4)0.0053 (4)0.0050 (4)0.0044 (3)
O110.0183 (5)0.0114 (4)0.0108 (4)0.0066 (4)0.0045 (4)0.0036 (3)
O120.0271 (6)0.0227 (5)0.0190 (5)0.0157 (5)0.0131 (4)0.0095 (4)
O130.0139 (5)0.0264 (5)0.0110 (4)0.0030 (4)0.0041 (4)0.0031 (4)
Co10.01010 (9)0.00890 (8)0.00667 (8)0.00262 (6)0.00218 (6)0.00084 (6)
Co20.01542 (12)0.01014 (11)0.00968 (11)0.00476 (9)0.00401 (9)0.00194 (8)

Geometric parameters (Å, °)

C1—O21.2401 (16)C16—N41.3541 (16)
C1—O11.2729 (16)C16—N61.3548 (16)
C1—C21.5195 (17)C17—N71.3232 (17)
C2—N11.3358 (16)C17—N61.3310 (17)
C2—C31.3922 (17)C17—N81.3636 (16)
C3—C41.3965 (18)N1—Co12.0218 (11)
C3—H3A0.930N2—Co12.0211 (11)
C4—C51.3952 (18)N3—H3B0.83 (2)
C4—H40.930N3—H3C0.84 (2)
C5—C61.3898 (17)N5—H5B0.83 (2)
C5—H5A0.930N5—H5C0.82 (2)
C6—N11.3356 (16)N7—H7A0.82 (2)
C6—C71.5199 (17)N7—H7B0.81 (2)
C7—O41.2438 (16)N8—H80.86 (3)
C7—O31.2781 (15)O1—Co12.1383 (10)
C8—O61.2373 (16)O3—Co12.1802 (10)
C8—O51.2833 (16)O5—Co12.1532 (10)
C8—C91.5223 (17)O7—Co12.1916 (9)
C9—N21.3391 (16)O9—Co22.0538 (10)
C9—C101.3877 (17)O9—H9A0.79 (3)
C10—C111.3989 (18)O9—H9B0.87 (3)
C10—H10A0.930O10—Co22.1250 (10)
C11—C121.3982 (18)O10—H10B0.81 (3)
C11—H11A0.930O10—H10C0.81 (3)
C12—C131.3920 (17)O11—Co22.1166 (10)
C12—H12A0.930O11—H11B0.81 (3)
C13—N21.3364 (16)O11—H11C0.83 (3)
C13—C141.5196 (17)O12—H12B0.79 (3)
C14—O81.2576 (15)O12—H12C0.85 (3)
C14—O71.2624 (15)O13—H13A0.77 (3)
C15—N31.3205 (17)O13—H13B0.83 (3)
C15—N41.3324 (16)Co2—O9i2.0538 (10)
C15—N81.3706 (16)Co2—O11i2.1166 (10)
C16—N51.3251 (17)Co2—O10i2.1250 (10)
O2—C1—O1126.05 (12)C15—N3—H3C118.9 (14)
O2—C1—C2118.92 (12)H3B—N3—H3C120 (2)
O1—C1—C2115.03 (11)C15—N4—C16115.97 (11)
N1—C2—C3121.29 (12)C16—N5—H5B121.4 (16)
N1—C2—C1112.54 (11)C16—N5—H5C120.0 (16)
C3—C2—C1126.15 (11)H5B—N5—H5C119 (2)
C2—C3—C4117.93 (12)C17—N6—C16115.98 (11)
C2—C3—H3A121.0C17—N7—H7A117.6 (15)
C4—C3—H3A121.0C17—N7—H7B120.4 (15)
C5—C4—C3119.94 (12)H7A—N7—H7B122 (2)
C5—C4—H4120.0C17—N8—C15119.54 (11)
C3—C4—H4120.0C17—N8—H8116.7 (16)
C6—C5—C4118.55 (12)C15—N8—H8123.8 (16)
C6—C5—H5A120.7C1—O1—Co1116.52 (8)
C4—C5—H5A120.7C7—O3—Co1114.43 (8)
N1—C6—C5120.80 (11)C8—O5—Co1115.52 (8)
N1—C6—C7113.45 (11)C14—O7—Co1114.48 (8)
C5—C6—C7125.72 (11)Co2—O9—H9A119 (2)
O4—C7—O3126.28 (12)Co2—O9—H9B116.3 (18)
O4—C7—C6118.49 (11)H9A—O9—H9B105 (3)
O3—C7—C6115.22 (11)Co2—O10—H10B117.2 (18)
O6—C8—O5126.18 (12)Co2—O10—H10C111.2 (17)
O6—C8—C9118.67 (11)H10B—O10—H10C107 (2)
O5—C8—C9115.14 (11)Co2—O11—H11B134.2 (18)
N2—C9—C10121.47 (12)Co2—O11—H11C113.0 (16)
N2—C9—C8113.40 (11)H11B—O11—H11C102 (2)
C10—C9—C8125.11 (11)H12B—O12—H12C108 (2)
C9—C10—C11118.14 (12)H13A—O13—H13B107 (3)
C9—C10—H10A120.9N2—Co1—N1172.24 (4)
C11—C10—H10A120.9N2—Co1—O1107.89 (4)
C12—C11—C10119.79 (12)N1—Co1—O176.33 (4)
C12—C11—H11A120.1N2—Co1—O576.99 (4)
C10—C11—H11A120.1N1—Co1—O596.02 (4)
C13—C12—C11118.36 (12)O1—Co1—O599.47 (4)
C13—C12—H12A120.8N2—Co1—O3100.34 (4)
C11—C12—H12A120.8N1—Co1—O376.35 (4)
N2—C13—C12121.12 (11)O1—Co1—O3151.15 (4)
N2—C13—C14112.50 (11)O5—Co1—O392.44 (4)
C12—C13—C14126.37 (11)N2—Co1—O776.19 (4)
O8—C14—O7125.66 (12)N1—Co1—O7110.86 (4)
O8—C14—C13117.54 (11)O1—Co1—O787.05 (4)
O7—C14—C13116.80 (11)O5—Co1—O7153.11 (4)
N3—C15—N4120.51 (12)O3—Co1—O794.11 (4)
N3—C15—N8118.32 (12)O9—Co2—O9i180.000 (1)
N4—C15—N8121.16 (11)O9—Co2—O11i88.64 (4)
N5—C16—N4116.86 (12)O9i—Co2—O11i91.36 (4)
N5—C16—N6117.28 (12)O9—Co2—O1191.36 (4)
N4—C16—N6125.86 (12)O9i—Co2—O1188.64 (4)
N7—C17—N6120.34 (12)O11i—Co2—O11180.0
N7—C17—N8118.30 (12)O9—Co2—O10i89.04 (4)
N6—C17—N8121.36 (12)O9i—Co2—O10i90.96 (4)
C6—N1—C2121.47 (11)O11i—Co2—O10i87.97 (4)
C6—N1—Co1119.06 (8)O11—Co2—O10i92.03 (4)
C2—N1—Co1119.45 (9)O9—Co2—O1090.96 (4)
C13—N2—C9121.11 (11)O9i—Co2—O1089.04 (4)
C13—N2—Co1119.93 (9)O11i—Co2—O1092.03 (4)
C9—N2—Co1118.84 (9)O11—Co2—O1087.97 (4)
C15—N3—H3B121.1 (16)O10i—Co2—O10180.00 (6)
O2—C1—C2—N1−175.99 (12)N5—C16—N6—C17179.97 (12)
O1—C1—C2—N13.28 (16)N4—C16—N6—C170.49 (19)
O2—C1—C2—C32.4 (2)N7—C17—N8—C15−176.18 (12)
O1—C1—C2—C3−178.33 (12)N6—C17—N8—C153.55 (19)
N1—C2—C3—C40.67 (19)N3—C15—N8—C17−179.25 (12)
C1—C2—C3—C4−177.60 (12)N4—C15—N8—C17−0.25 (19)
C2—C3—C4—C50.53 (19)O2—C1—O1—Co1178.25 (11)
C3—C4—C5—C6−1.09 (18)C2—C1—O1—Co1−0.95 (14)
C4—C5—C6—N10.48 (18)O4—C7—O3—Co1168.69 (10)
C4—C5—C6—C7178.42 (11)C6—C7—O3—Co1−12.44 (13)
N1—C6—C7—O4−174.80 (11)O6—C8—O5—Co1177.49 (11)
C5—C6—C7—O47.12 (19)C9—C8—O5—Co1−1.93 (14)
N1—C6—C7—O36.23 (15)O8—C14—O7—Co1−177.89 (10)
C5—C6—C7—O3−171.84 (12)C13—C14—O7—Co12.28 (14)
O6—C8—C9—N2179.96 (12)C13—N2—Co1—O184.95 (10)
O5—C8—C9—N2−0.58 (16)C9—N2—Co1—O1−99.00 (10)
O6—C8—C9—C10−1.74 (19)C13—N2—Co1—O5−179.15 (10)
O5—C8—C9—C10177.73 (12)C9—N2—Co1—O5−3.10 (9)
N2—C9—C10—C11−1.12 (19)C13—N2—Co1—O3−89.02 (10)
C8—C9—C10—C11−179.30 (12)C9—N2—Co1—O387.03 (10)
C9—C10—C11—C120.45 (19)C13—N2—Co1—O72.71 (9)
C10—C11—C12—C130.63 (19)C9—N2—Co1—O7178.76 (10)
C11—C12—C13—N2−1.12 (19)C6—N1—Co1—O1−178.41 (10)
C11—C12—C13—C14177.53 (12)C2—N1—Co1—O12.95 (9)
N2—C13—C14—O8−179.98 (11)C6—N1—Co1—O583.28 (9)
C12—C13—C14—O81.28 (19)C2—N1—Co1—O5−95.36 (9)
N2—C13—C14—O7−0.13 (16)C6—N1—Co1—O3−7.78 (9)
C12—C13—C14—O7−178.88 (12)C2—N1—Co1—O3173.58 (10)
C5—C6—N1—C20.73 (18)C6—N1—Co1—O7−97.00 (9)
C7—C6—N1—C2−177.45 (11)C2—N1—Co1—O784.36 (10)
C5—C6—N1—Co1−177.89 (9)C1—O1—Co1—N2172.32 (9)
C7—C6—N1—Co13.94 (14)C1—O1—Co1—N1−0.91 (9)
C3—C2—N1—C6−1.32 (18)C1—O1—Co1—O593.04 (10)
C1—C2—N1—C6177.17 (11)C1—O1—Co1—O3−20.05 (14)
C3—C2—N1—Co1177.29 (9)C1—O1—Co1—O7−113.22 (10)
C1—C2—N1—Co1−4.23 (14)C8—O5—Co1—N22.70 (9)
C12—C13—N2—C90.48 (19)C8—O5—Co1—N1−173.89 (9)
C14—C13—N2—C9−178.34 (11)C8—O5—Co1—O1109.02 (9)
C12—C13—N2—Co1176.44 (9)C8—O5—Co1—O3−97.36 (9)
C14—C13—N2—Co1−2.38 (14)C8—O5—Co1—O76.70 (15)
C10—C9—N2—C130.67 (19)C7—O3—Co1—N2−161.61 (9)
C8—C9—N2—C13179.04 (11)C7—O3—Co1—N111.20 (9)
C10—C9—N2—Co1−175.33 (9)C7—O3—Co1—O130.34 (13)
C8—C9—N2—Co13.04 (14)C7—O3—Co1—O5−84.40 (9)
N3—C15—N4—C16176.38 (12)C7—O3—Co1—O7121.69 (9)
N8—C15—N4—C16−2.61 (18)C14—O7—Co1—N2−2.67 (9)
N5—C16—N4—C15−176.90 (12)C14—O7—Co1—N1173.94 (9)
N6—C16—N4—C152.58 (19)C14—O7—Co1—O1−111.90 (9)
N7—C17—N6—C16176.15 (12)C14—O7—Co1—O5−6.68 (14)
N8—C17—N6—C16−3.57 (18)C14—O7—Co1—O396.99 (9)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3B···O13ii0.83 (2)1.97 (2)2.7982 (18)178 (3)
N3—H3C···O30.84 (2)2.21 (2)3.0041 (17)159 (2)
N5—H5B···O3iii0.83 (2)2.35 (2)2.9713 (16)133 (2)
N5—H5C···N4iii0.82 (2)2.16 (2)2.9765 (17)178 (3)
N7—H7A···O10iii0.82 (2)2.22 (2)3.0291 (16)169 (2)
N7—H7B···O7ii0.80 (2)2.26 (2)3.0560 (17)172 (2)
N8—H8···O8ii0.85 (2)1.89 (2)2.7404 (17)174 (2)
O9—H9A···N6iii0.79 (3)1.94 (3)2.7298 (16)179 (4)
O9—H9B···O2iv0.87 (3)1.89 (3)2.7263 (16)162 (3)
O10—H10B···O120.81 (2)1.88 (3)2.6759 (17)167 (3)
O10—H10C···O4i0.81 (2)1.97 (2)2.7675 (15)171 (3)
O11—H11B···O50.80 (3)1.97 (2)2.7313 (14)157 (2)
O11—H11C···O2v0.83 (2)1.90 (2)2.7101 (16)165 (2)
O12—H12B···O4vi0.79 (3)2.06 (3)2.8389 (17)174 (2)
O12—H12C···O60.84 (3)1.98 (3)2.8196 (16)171 (2)
O13—H13A···O1vii0.77 (3)2.01 (3)2.7642 (16)171 (3)
O13—H13B···O80.82 (3)1.87 (3)2.6642 (14)163 (2)
C4—H4···O13viii0.932.433.164 (2)136
C10—H10A···O6ix0.932.453.344 (2)162

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x, −y, −z; (iv) x, y−1, z; (i) −x, −y, −z+1; (v) −x, −y+1, −z+1; (vi) x−1, y, z; (vii) −x, −y+1, −z; (viii) x, y, z+1; (ix) −x−1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2263).

References

  • Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007). Acta Cryst. E63, m1803–m1804.
  • Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheshmani, S., Aghabozorg, H., Panah, F. M., Alizadeh, R., Kickelbick, G., Nakhjavan, B., Moghimi, A., Ramezanipour, F. & Aghabozorg, H. R. (2006). Z. Anorg. Allg. Chem.632, 469–474.
  • Stoe & Cie (2004). X-SHAPE Stoe & Cie, Darmstadt, Germany.
  • Stoe & Cie (2005). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography