PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m186.
Published online 2007 December 18. doi:  10.1107/S1600536807064884
PMCID: PMC2915119

Bis(guanidinium) trans-diaqua­bis(malonato-κ2 O,O′)cobaltate(II)

Abstract

In the title compound, (CH6N3)2[Co(C3H2O4)2(H2O)2], the anions lie on crystallographic centres of inversion. The crystal structure adopts a layered structure, stabilized by an extensive network of N—H(...)O and O—H(...)O hydrogen bonds. One H atom of the guanidinium cation does not participate in any strong hydrogen bonds.

Related literature

For related literature, see: Cygler et al. (1976 [triangle]); Etter et al. (1990 [triangle]); Hemamalini et al. (2006 [triangle]); Videnova-Adrabińska et al. (2007 [triangle]); Zhao et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m186-scheme1.jpg

Experimental

Crystal data

  • (CH6N3)2[Co(C3H2O4)2(H2O)2]
  • M r = 419.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m186-efi7.jpg
  • a = 8.969 (3) Å
  • b = 11.524 (4) Å
  • c = 8.272 (3) Å
  • β = 111.61 (4)°
  • V = 794.9 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 100 (2) K
  • 0.31 × 0.25 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur PX CCD diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.720, T max = 0.848
  • 11133 measured reflections
  • 3445 independent reflections
  • 2768 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.091
  • S = 1.03
  • 3445 reflections
  • 115 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807064884/bi2267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064884/bi2267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Supramolecular motifs with malonate ions have been widely explored in crystal engineering (Hemamalini et al., 2006, Zhao et al., 2007). These ligands as part of [M(malonate)2(H2O)2]2- anions have been used as "robust anionic building blocks for crystal engineering of inorganic-organic hybrid materials" (Zhao et al., 2007).

The title compound consists of trans-diaquabis(malonato-O,O')-cobaltate(II) anions and guanidinium cations (Fig. 1). In each centrosymmetric anion, the central CoII atom is octahedrally surrounded by two water ligands and two chelating malonate ligands. The guanidinium cation geometrical parameters agree with those previously reported (Cygler et al., 1976).

The crystal adopts a layered structure, common for guanidinium salts (Fig. 2; Videnova-Adrabińska et al., 2007). Alternate layers consist of the trans-diaquabis(malonato-O,O')-cobaltate(II) anions and the guanidinium cations. Within each anion layer, both water ligands are involved in O—H···O hydrogen bonds. In two of these hydrogen bonds, the carboxyl O22 and O21 atoms from the malonate ligands act as acceptors (Fig. 3). Each guanidinium cation is hydrogen bonded to the anions from both neighbouring anion layers (Fig. 3). Atom H201 participates in a bifurcated N—H···O hydrogen bond to the malonate carboxyl O11 and water O1W atoms, constituting a R12(4) motif (Etter et al., 1990). Atom H302 is involved in the N30—H302···O21 hydrogen bond with the malonate carboxyl O21 atom. This hydrogen bond along with the N20—H201···O11 hydrogen bonds forms a R22(8) motif (Etter et al., 1990). The hydrogen bonds formed between the guanidinium cation and another anion layer are the following: N10—H102···O21, N10—H101···O12 and N30—H301···O22. The latter two form a R31(8) structural motif (Etter et al., 1990). It is interesting to note that one guanidinium H atom (H202) is not involved in any strong hydrogen bonds.

Experimental

The title complex was prepared by dissolving guanidinium carbonate (4 mmol, 720 mg) and malonic acid (2 mmol, 208 mg) in water (20 ml). The mixture was stirred for about 1 h at room temperature. Subsequently, Co(ClO4)2 (1 mmol, 366 mg) was added to the resulting solution and stirred for about 3 h at room temperature. The solution yielded crystals after 10 d.

Refinement

The malonate H atoms were generated in their calculated positions. All remaining H atoms were found in difference Fourier maps and their positions were refined initially with the water O—H bond lengths and guanidinium N—H bond lengths restrained to be 0.820 (1) and 0.860 (1) Å, respectively. In the final stages of refinement, these H atoms were constrained to ride on their parent atoms (AFIX 3 instruction) with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids at 30% probability for non-H atoms. The part indicated with dashed lines is generated by the symmetry operation -x + 1, -y + 1, -z + 1.
Fig. 2.
View of the crystal structure along [010] showing cation and anion layers parallel to the bc plane.
Fig. 3.
View of the hydrogen bonding scheme. The non-aqueous H atoms not participating in any hydrogen bonds have been omitted and the neighbouring ions have been denoted with different colour (gray and black). The hydrogen bonds are indicated with dashed lines. ...

Crystal data

(CH6N3)2[Co(C3H2O4)2(H2O)2]F000 = 434
Mr = 419.23Dx = 1.752 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9403 reflections
a = 8.969 (3) Åθ = 2–35º
b = 11.524 (4) ŵ = 1.15 mm1
c = 8.272 (3) ÅT = 100 (2) K
β = 111.61 (4)ºBlock, pink
V = 794.9 (5) Å30.31 × 0.25 × 0.18 mm
Z = 2

Data collection

Oxford Diffraction XcaliburPX CCD diffractometer3445 independent reflections
Radiation source: sealed tube2768 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 100(2) Kθmax = 36.5º
ω & [var phi] scansθmin = 3.0º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2006)h = −14→14
Tmin = 0.720, Tmax = 0.848k = −15→17
11133 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.091  w = 1/[σ2(Fo2) + (0.060P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3445 reflectionsΔρmax = 0.58 e Å3
115 parametersΔρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.50000.50000.50000.00962 (6)
O110.63731 (9)0.63701 (7)0.64141 (10)0.01133 (14)
O210.73793 (9)0.81502 (7)0.69642 (10)0.01402 (15)
O120.36319 (9)0.61700 (7)0.32127 (10)0.01255 (15)
O220.26743 (9)0.78487 (7)0.19808 (10)0.01408 (16)
N101.18921 (11)0.52517 (9)0.97198 (13)0.01332 (17)
H1011.23990.54981.07590.016*
H1021.21230.45950.93800.016*
N200.96719 (12)0.53173 (10)0.71656 (13)0.01675 (19)
H2010.87220.55620.65690.020*
H2020.98050.46050.69470.020*
N301.01516 (11)0.68018 (9)0.91834 (13)0.01470 (17)
H3011.08150.71331.00960.018*
H3020.93140.71470.84780.018*
C20.49632 (12)0.79769 (10)0.45438 (14)0.01213 (19)
H10.54730.84660.39090.015*
H20.43930.85120.50550.015*
O1W0.33221 (11)0.50357 (6)0.62312 (12)0.01377 (16)
H1W0.31460.56200.66960.017*
H2W0.32530.45670.69470.017*
C30.36771 (11)0.72673 (9)0.31750 (13)0.00952 (17)
C101.05660 (12)0.57952 (10)0.86977 (13)0.01182 (18)
C10.63218 (11)0.74416 (9)0.60624 (13)0.00945 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.01041 (10)0.00690 (11)0.01022 (10)−0.00018 (6)0.00225 (7)0.00026 (6)
O110.0121 (3)0.0070 (4)0.0123 (3)0.0000 (2)0.0014 (2)−0.0010 (3)
O210.0127 (3)0.0093 (4)0.0154 (4)−0.0015 (3)−0.0004 (3)−0.0020 (3)
O120.0138 (3)0.0070 (4)0.0124 (3)−0.0008 (3)−0.0003 (3)0.0009 (3)
O220.0134 (3)0.0086 (4)0.0144 (4)0.0002 (3)−0.0017 (3)0.0021 (3)
N100.0120 (4)0.0128 (4)0.0128 (4)0.0013 (3)0.0018 (3)−0.0006 (3)
N200.0125 (4)0.0190 (5)0.0153 (4)−0.0012 (3)0.0011 (3)−0.0049 (4)
N300.0111 (4)0.0136 (4)0.0158 (4)0.0014 (3)0.0008 (3)−0.0014 (3)
O1W0.0200 (4)0.0074 (4)0.0180 (4)0.0006 (3)0.0118 (3)0.0001 (3)
C10.0094 (4)0.0088 (5)0.0102 (4)0.0004 (3)0.0037 (3)−0.0012 (3)
C20.0126 (4)0.0082 (5)0.0119 (4)−0.0008 (3)0.0002 (3)−0.0002 (3)
C30.0096 (4)0.0082 (5)0.0101 (4)−0.0003 (3)0.0029 (3)0.0003 (3)
C100.0101 (4)0.0126 (5)0.0123 (4)−0.0023 (3)0.0035 (3)−0.0002 (3)

Geometric parameters (Å, °)

Co—O112.078 (1)O11—C11.2655 (14)
Co—O122.043 (2)O21—C11.2656 (14)
Co—O1W2.105 (2)O12—C31.2659 (14)
N10—C101.334 (2)O22—C31.2567 (14)
N20—C101.343 (2)C2—C11.5218 (16)
N30—C101.325 (2)C2—C31.5229 (16)
Co—O12i2.0429 (11)C2—H10.99
Co—O11i2.0777 (10)C2—H20.99
Co—O1Wi2.1053 (11)
O12—Co—O1188.8 (1)O11i—Co—O1Wi95.39 (4)
O12—Co—O1W89.5 (1)O1W—Co—O1Wi180.0
O11—Co—O1W95.4 (1)C1—O11—Co130.40 (7)
N30—C10—N10120.2 (1)C3—O12—Co131.37 (7)
N30—C10—N20120.6 (1)C1—C2—C3123.57 (10)
N10—C10—N20119.2 (2)C1—C2—H1106.4
O12i—Co—O12180.0C3—C2—H1106.4
O12i—Co—O1191.18 (5)C1—C2—H2106.4
O12i—Co—O11i88.82 (5)C3—C2—H2106.4
O12—Co—O11i91.18 (5)H1—C2—H2106.5
O11—Co—O11i180.0O22—C3—O12122.12 (10)
O12i—Co—O1W90.50 (4)O22—C3—C2115.15 (10)
O11i—Co—O1W84.61 (4)O12—C3—C2122.72 (9)
O12i—Co—O1Wi89.50 (4)O11—C1—O21122.56 (10)
O12—Co—O1Wi90.50 (4)O11—C1—C2122.38 (9)
O11—Co—O1Wi84.61 (4)O21—C1—C2115.05 (10)
C3—C2—C1—O11−8.6 (2)O1Wi—Co—O12—C3−87.46 (10)
C3—C2—C1—O21172.6 (1)Co—O12—C3—O22−176.83 (7)
O12i—Co—O11—C1174.90 (9)Co—O12—C3—C24.47 (15)
O12—Co—O11—C1−5.10 (9)C1—C2—C3—O22−177.85 (10)
O1W—Co—O11—C1−94.49 (9)C1—C2—C3—O120.93 (16)
O1Wi—Co—O11—C185.51 (9)Co—O11—C1—O21−170.78 (7)
O11i—Co—O12—C3177.14 (9)Co—O11—C1—C210.54 (14)
O1W—Co—O12—C392.54 (10)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N20—H201···O110.862.263.043 (2)151
N20—H201···O1Wi0.862.463.117 (2)133
N10—H102···O21ii0.862.142.984 (2)168
N10—H101···O12iii0.862.072.930 (2)177
N30—H301···O22iii0.861.992.841 (2)168
N30—H302···O210.862.082.934 (2)173
O1W—H1W···O22iv0.821.852.633 (2)160
O1W—H2W···O21v0.822.042.835 (2)162

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y−1/2, −z+3/2; (iii) x+1, y, z+1; (iv) x, −y+3/2, z+1/2; (v) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2267).

References

  • Brandenburg, K. & Putz, H. (2005). DIAMOND Version 3. Crystal Impact GbR, Bonn, Germany.
  • Cygler, M., Grabowski, M. J., Stępień, A. & Wajsman, E. (1976). Acta Cryst. B32, 2391–2395.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Hemamalini, M., Muthiah, P. T., Butcher, R. J. & Lynch, D. E. (2006). Inorg. Chem. Commun.9, 1155–1160.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Videnova-Adrabińska, V., Obara, E. & Lis, T. (2007). New J. Chem.31, 287–295.
  • Zhao, X.-J., Zhang, Z.-H., Wang, Y. & Du, M. (2007). Inorg. Chim. Acta, 360, 1921–1928.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography