PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m181.
Published online 2007 December 12. doi:  10.1107/S1600536807066019
PMCID: PMC2915115

Bis[μ-2,3-bis­(imidazol-1-ylmeth­yl)quinoxaline]disilver(I) bis­(tetra­fluoridoborate)

Abstract

The title compound, [Ag2(C16H14N6)2](BF4)2, forms a centrosymmetric 22-membered metallamacrocycle via two AgI ions bridging two 2,3-bis­(imidazol-1-ylmeth­yl)quinoxaline ligands. The AgI ions are coordinated by two N donors of the imidazole groups, forming an approximately linear coordination geometry.

Related literature

For related literature, see: Li, Liu et al. (2007 [triangle]); Li, Tao et al. (2007 [triangle]); Zhang et al. (2006 [triangle]); Zou et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m181-scheme1.jpg

Experimental

Crystal data

  • [Ag2(C16H14N6)2](BF4)2
  • M r = 970.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m181-efi1.jpg
  • a = 8.5398 (19) Å
  • b = 9.311 (2) Å
  • c = 12.104 (3) Å
  • α = 76.350 (4)°
  • β = 76.603 (4)°
  • γ = 73.208 (4)°
  • V = 881.4 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.796, T max = 0.831
  • 5006 measured reflections
  • 3556 independent reflections
  • 2326 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.108
  • S = 1.00
  • 3556 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066019/lh2577sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066019/lh2577Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hebei University for supporting this work.

supplementary crystallographic information

Comment

The synthesis of metal-organic macrocyclic and polymeric compounds have drawn much attention in rcecnt years not only because of their interesting properties and potential applications, but also due to variety of structural topologies (Zou, et al., 2004; Zhang et al., 2006; Li Tao et al., 2007). Much progress has been reported in the study of cyrstal engineering of supramolecular architectures using N-donor ligands (Li, Liu et al., 2007). The title compound (I) is a dinuclear Ag(I) complex formed with two 2,3-bis(imidazol-1-ylmethyl)quinoxaline ligands (Fig.1). The AgI atoms are coordinated by two N donors of the imiazole groups, forming a approximately linear coordination geometry. The molecular structure forms a centrosymmetric 22-membered metallacrocycle.

Experimental

2,3-bis(imidazol-1-ylmethyl)quinoxaline was synthesized by a modified literature method (Li, Liu et al., 2007). A solution of 2,3-bis(imidazol-1-ylmethyl)quinoxaline (32 mg, 0.1 mmol) in MeOH (10 ml) was carefully layered on top of a AgBF4 (20 mg, 0.1 mmol) solution in H2O in a test-tube, which was placed in the darkness. After 10 d at room temperature, coloress single crystals of (I) were obtained (yield: 30 mg, 30%).

Refinement

The H atoms were placed in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and 0.97 Å; Uiso(H) = 1.2 Ueq.

Figures

Fig. 1.
the molecular with 30% displacement probability. Unlabelled atoms are generated by the symmetry operation (- x, - y, - z). Only the symmetry unique BF4 anion is shown.

Crystal data

[Ag2(C16H14N6)2](BF4)2Z = 1
Mr = 970.02F000 = 480
Triclinic, P1Dx = 1.827 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.5398 (19) ÅCell parameters from 1538 reflections
b = 9.311 (2) Åθ = 2.3–23.9º
c = 12.104 (3) ŵ = 1.20 mm1
α = 76.350 (4)ºT = 293 (2) K
β = 76.603 (4)ºBlock, colorless
γ = 73.208 (4)º0.20 × 0.18 × 0.16 mm
V = 881.4 (4) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3556 independent reflections
Radiation source: fine-focus sealed tube2326 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 293(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −10→10
Tmin = 0.796, Tmax = 0.831k = −11→10
5006 measured reflectionsl = −11→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0389P)2 + 1.1091P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3556 reflectionsΔρmax = 0.61 e Å3
253 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.19306 (5)−0.02219 (5)−0.09278 (4)0.05500 (18)
N10.2915 (5)0.1119 (5)−0.0225 (3)0.0468 (11)
N20.3706 (5)0.2045 (4)0.1003 (3)0.0396 (10)
N30.5399 (5)−0.0159 (5)0.3042 (3)0.0401 (10)
N40.2569 (5)−0.0400 (5)0.4717 (3)0.0405 (10)
N50.0162 (4)0.2173 (4)0.2876 (3)0.0375 (9)
N6−0.0997 (5)0.1574 (5)0.1666 (3)0.0406 (10)
C10.3174 (6)0.0900 (6)0.0840 (4)0.0386 (11)
H1A0.30100.00610.14060.046*
C20.3313 (8)0.2453 (7)−0.0763 (5)0.0663 (17)
H2A0.32550.2896−0.15310.080*
C30.3806 (8)0.3042 (7)−0.0024 (5)0.0647 (17)
H3A0.41460.3944−0.01810.078*
C40.4059 (6)0.2277 (6)0.2072 (4)0.0429 (12)
H4A0.32480.31620.23230.051*
H4B0.51490.24790.19190.051*
C50.4007 (6)0.0904 (5)0.3025 (4)0.0368 (11)
C60.5423 (6)−0.1396 (5)0.3899 (4)0.0385 (12)
C70.6913 (6)−0.2570 (6)0.3952 (5)0.0484 (13)
H7A0.7858−0.24940.33990.058*
C80.6947 (7)−0.3806 (6)0.4817 (5)0.0511 (14)
H8A0.7916−0.45840.48420.061*
C90.5553 (7)−0.3927 (6)0.5666 (5)0.0526 (15)
H9A0.5607−0.47730.62590.063*
C100.4105 (7)−0.2807 (6)0.5633 (5)0.0496 (14)
H10A0.3177−0.29010.61980.060*
C110.4018 (6)−0.1520 (5)0.4748 (4)0.0398 (12)
C120.2574 (6)0.0785 (5)0.3867 (4)0.0366 (11)
C130.0938 (6)0.2008 (6)0.3887 (4)0.0444 (13)
H13A0.01750.17470.45880.053*
H13B0.11380.29770.39000.053*
C14−0.0340 (6)0.1069 (5)0.2612 (4)0.0393 (11)
H14A−0.02370.00850.30390.047*
C15−0.0222 (6)0.3462 (6)0.2053 (5)0.0490 (13)
H15A−0.00290.44080.20110.059*
C16−0.0935 (6)0.3070 (6)0.1324 (5)0.0512 (14)
H16A−0.13270.37200.06810.061*
B10.1799 (10)0.6832 (8)0.2227 (7)0.0602 (19)
F10.2917 (7)0.5925 (6)0.1565 (6)0.162 (2)
F20.2537 (7)0.7599 (6)0.2651 (5)0.1363 (19)
F30.1090 (6)0.5843 (5)0.3089 (4)0.1135 (15)
F40.0645 (7)0.7784 (6)0.1667 (5)0.158 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0564 (3)0.0600 (3)0.0593 (3)−0.0085 (2)−0.0270 (2)−0.0223 (2)
N10.052 (3)0.053 (3)0.039 (2)−0.010 (2)−0.013 (2)−0.012 (2)
N20.046 (2)0.037 (2)0.041 (2)−0.0140 (19)−0.0130 (19)−0.0062 (19)
N30.040 (2)0.045 (3)0.042 (2)−0.011 (2)−0.0138 (19)−0.013 (2)
N40.045 (2)0.043 (2)0.036 (2)−0.006 (2)−0.0160 (19)−0.0107 (19)
N50.036 (2)0.037 (2)0.043 (2)−0.0073 (18)−0.0128 (18)−0.0086 (19)
N60.038 (2)0.045 (3)0.042 (2)−0.009 (2)−0.0150 (19)−0.0063 (19)
C10.041 (3)0.039 (3)0.037 (3)−0.013 (2)−0.006 (2)−0.007 (2)
C20.102 (5)0.068 (4)0.037 (3)−0.034 (4)−0.023 (3)0.004 (3)
C30.100 (5)0.058 (4)0.044 (3)−0.044 (4)−0.016 (3)0.009 (3)
C40.047 (3)0.041 (3)0.048 (3)−0.016 (2)−0.012 (2)−0.013 (2)
C50.040 (3)0.035 (3)0.041 (3)−0.010 (2)−0.020 (2)−0.006 (2)
C60.042 (3)0.038 (3)0.041 (3)−0.004 (2)−0.019 (2)−0.014 (2)
C70.044 (3)0.050 (3)0.053 (3)−0.002 (3)−0.018 (3)−0.015 (3)
C80.053 (3)0.038 (3)0.069 (4)0.004 (3)−0.031 (3)−0.020 (3)
C90.070 (4)0.036 (3)0.057 (3)−0.006 (3)−0.035 (3)−0.005 (2)
C100.054 (3)0.047 (3)0.049 (3)−0.006 (3)−0.019 (3)−0.010 (3)
C110.043 (3)0.041 (3)0.041 (3)0.000 (2)−0.020 (2)−0.019 (2)
C120.040 (3)0.039 (3)0.037 (3)−0.007 (2)−0.017 (2)−0.014 (2)
C130.043 (3)0.046 (3)0.047 (3)0.000 (2)−0.018 (2)−0.018 (2)
C140.040 (3)0.034 (3)0.042 (3)−0.004 (2)−0.010 (2)−0.006 (2)
C150.054 (3)0.031 (3)0.063 (4)−0.006 (2)−0.027 (3)0.000 (3)
C160.056 (3)0.043 (3)0.055 (3)−0.009 (3)−0.031 (3)0.006 (3)
B10.074 (5)0.035 (4)0.072 (5)−0.012 (4)−0.025 (4)−0.002 (3)
F10.146 (5)0.094 (4)0.223 (6)−0.029 (3)0.056 (4)−0.072 (4)
F20.184 (5)0.103 (4)0.162 (5)−0.071 (4)−0.066 (4)−0.022 (3)
F30.114 (3)0.109 (4)0.120 (4)−0.053 (3)−0.038 (3)0.024 (3)
F40.170 (5)0.121 (4)0.154 (5)0.030 (4)−0.099 (4)0.016 (3)

Geometric parameters (Å, °)

Ag1—N12.105 (4)C4—H4B0.9700
Ag1—N6i2.112 (4)C5—C121.413 (7)
Ag1—Ag1i3.5081 (11)C6—C111.400 (7)
N1—C11.317 (5)C6—C71.421 (7)
N1—C21.357 (7)C7—C81.359 (8)
N2—C11.342 (6)C7—H7A0.9300
N2—C31.367 (7)C8—C91.393 (8)
N2—C41.471 (5)C8—H8A0.9300
N3—C51.309 (6)C9—C101.370 (7)
N3—C61.355 (6)C9—H9A0.9300
N4—C121.319 (6)C10—C111.403 (7)
N4—C111.370 (6)C10—H10A0.9300
N5—C141.348 (6)C12—C131.525 (6)
N5—C151.378 (6)C13—H13A0.9700
N5—C131.479 (5)C13—H13B0.9700
N6—C141.319 (5)C14—H14A0.9300
N6—C161.369 (6)C15—C161.346 (7)
N6—Ag1i2.112 (4)C15—H15A0.9300
C1—H1A0.9300C16—H16A0.9300
C2—C31.348 (7)B1—F41.318 (8)
C2—H2A0.9300B1—F21.324 (8)
C3—H3A0.9300B1—F11.328 (8)
C4—C51.510 (7)B1—F31.370 (8)
C4—H4A0.9700
N1—Ag1—N6i178.55 (16)C8—C7—H7A120.2
N1—Ag1—Ag1i97.02 (11)C6—C7—H7A120.2
N6i—Ag1—Ag1i84.42 (11)C7—C8—C9121.1 (5)
C1—N1—C2105.7 (4)C7—C8—H8A119.5
C1—N1—Ag1127.6 (4)C9—C8—H8A119.5
C2—N1—Ag1126.6 (3)C10—C9—C8120.4 (5)
C1—N2—C3107.0 (4)C10—C9—H9A119.8
C1—N2—C4128.5 (4)C8—C9—H9A119.8
C3—N2—C4124.4 (4)C9—C10—C11120.2 (5)
C5—N3—C6117.6 (4)C9—C10—H10A119.9
C12—N4—C11117.1 (4)C11—C10—H10A119.9
C14—N5—C15107.3 (4)N4—C11—C6120.5 (5)
C14—N5—C13125.3 (4)N4—C11—C10120.1 (5)
C15—N5—C13127.4 (4)C6—C11—C10119.3 (4)
C14—N6—C16106.0 (4)N4—C12—C5121.7 (4)
C14—N6—Ag1i123.6 (3)N4—C12—C13114.8 (4)
C16—N6—Ag1i130.3 (3)C5—C12—C13123.4 (4)
N1—C1—N2111.2 (4)N5—C13—C12112.3 (3)
N1—C1—H1A124.4N5—C13—H13A109.2
N2—C1—H1A124.4C12—C13—H13A109.2
C3—C2—N1110.2 (5)N5—C13—H13B109.2
C3—C2—H2A124.9C12—C13—H13B109.2
N1—C2—H2A124.9H13A—C13—H13B107.9
C2—C3—N2106.0 (5)N6—C14—N5110.7 (4)
C2—C3—H3A127.0N6—C14—H14A124.6
N2—C3—H3A127.0N5—C14—H14A124.6
N2—C4—C5111.8 (4)C16—C15—N5105.9 (5)
N2—C4—H4A109.3C16—C15—H15A127.1
C5—C4—H4A109.3N5—C15—H15A127.1
N2—C4—H4B109.3C15—C16—N6110.1 (4)
C5—C4—H4B109.3C15—C16—H16A125.0
H4A—C4—H4B107.9N6—C16—H16A125.0
N3—C5—C12121.8 (4)F4—B1—F2110.1 (6)
N3—C5—C4115.6 (4)F4—B1—F1112.2 (7)
C12—C5—C4122.6 (4)F2—B1—F1110.3 (7)
N3—C6—C11121.2 (4)F4—B1—F3109.3 (7)
N3—C6—C7119.3 (5)F2—B1—F3111.0 (6)
C11—C6—C7119.5 (5)F1—B1—F3103.8 (6)
C8—C7—C6119.5 (5)
Ag1i—Ag1—N1—C160.4 (4)N3—C6—C11—N41.3 (6)
Ag1i—Ag1—N1—C2−114.9 (5)C7—C6—C11—N4179.8 (4)
C2—N1—C1—N20.5 (6)N3—C6—C11—C10−178.8 (4)
Ag1—N1—C1—N2−175.5 (3)C7—C6—C11—C10−0.3 (6)
C3—N2—C1—N1−0.6 (6)C9—C10—C11—N4−179.9 (4)
C4—N2—C1—N1176.8 (4)C9—C10—C11—C60.3 (7)
C1—N1—C2—C3−0.2 (7)C11—N4—C12—C5−0.1 (6)
Ag1—N1—C2—C3175.9 (4)C11—N4—C12—C13−179.0 (4)
N1—C2—C3—N2−0.2 (7)N3—C5—C12—N40.4 (7)
C1—N2—C3—C20.5 (6)C4—C5—C12—N4−177.7 (4)
C4—N2—C3—C2−177.1 (5)N3—C5—C12—C13179.1 (4)
C1—N2—C4—C58.8 (7)C4—C5—C12—C131.1 (6)
C3—N2—C4—C5−174.2 (5)C14—N5—C13—C1261.3 (6)
C6—N3—C5—C120.2 (6)C15—N5—C13—C12−120.5 (5)
C6—N3—C5—C4178.4 (4)N4—C12—C13—N5−115.4 (5)
N2—C4—C5—N386.7 (5)C5—C12—C13—N565.7 (6)
N2—C4—C5—C12−95.2 (5)C16—N6—C14—N5−1.0 (5)
C5—N3—C6—C11−1.1 (6)Ag1i—N6—C14—N5179.5 (3)
C5—N3—C6—C7−179.6 (4)C15—N5—C14—N60.8 (5)
N3—C6—C7—C8179.4 (4)C13—N5—C14—N6179.3 (4)
C11—C6—C7—C80.8 (7)C14—N5—C15—C16−0.3 (6)
C6—C7—C8—C9−1.3 (7)C13—N5—C15—C16−178.8 (4)
C7—C8—C9—C101.2 (8)N5—C15—C16—N6−0.3 (6)
C8—C9—C10—C11−0.7 (7)C14—N6—C16—C150.8 (6)
C12—N4—C11—C6−0.7 (6)Ag1i—N6—C16—C15−179.7 (3)
C12—N4—C11—C10179.5 (4)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2577).

References

  • Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, C. Y., Liu, C. S., Li, J. R. & Bu, X. H. (2007). Cryst. Growth Des.7, 286–295.
  • Li, J. R., Tao, Y., Yu, Q. & Bu, X. H. (2007). Chem. Commun. pp. 1527–1529. [PubMed]
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Zhang, Z. H., Song, Y., Okamura, T., Hasegawa, Y., Sun, W. Y. & Ueyama, N. (2006). Inorg. Chem.45, 2896–2902. [PubMed]
  • Zou, R. Q., Li, J. R., Xie, Y. B., Zhang, R. H. & Bu, X. H. (2004). Cryst. Growth Des.4, 79–84.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography