PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m175.
Published online 2007 December 12. doi:  10.1107/S1600536807066044
PMCID: PMC2915110

Diaqua­bis(4-methyl­benzoato-κ2 O,O′)cadmium(II)

Abstract

In the title mononuclear complex, [Cd(C8H7O2)2(H2O)2], the CdII atom possesses crystallographically imposed C 2 site symmetry, and is coordinated by four O atoms from two 4-methyl­benzoate ligands and two water mol­ecules, displaying a distorted octa­hedral geometry. The molecules are assembled via inter­molecular O—H(...)O hydrogen-bond inter­actions into a supra­molecular architecture.

Related literature

For the crystal structure of 4-methyl­benzoic acid, see: Song et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m175-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H7O2)2(H2O)2]
  • M r = 418.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m175-efi2.jpg
  • a = 26.5836 (8) Å
  • b = 5.3542 (1) Å
  • c = 12.0625 (3) Å
  • β = 107.414 (3)°
  • V = 1638.21 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 296 (2) K
  • 0.28 × 0.26 × 0.24 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.702, T max = 0.736
  • 7419 measured reflections
  • 1528 independent reflections
  • 1462 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.062
  • S = 1.19
  • 1528 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: XP (Bruker, 2004 [triangle]); software used to prepare material for publication: SHELXL97 and XP.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807066044/lx2040sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807066044/lx2040Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand (Song et al. 2007), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound (Fig. 1), a new Cd complex obtained by the reaction of 4-methylbenzoic acid with cadmium chloride in alkaline aqueous solution.

As illustrated in Fig. 1, the CdII atom, possesses crystallogarphically imposed C2 symmetry, which is coordinated by four O atoms from two 4-methylbenzate ligands and two water molecules, and displaying a distorted octahedral geometry. Intermolecular O—H···O hydrogen bond interactions (Table 1) between the coordinated water molecules and the carboxyl O atoms of 4-methylbenzate ligands stabilize the structural packing (Fig. 2).

Experimental

A mixture of cadmium chloride(183 mg, 1 mmol), 4-methylbenzoic acid (136 mg, 1 mmol), NaOH (60 mg, 1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å and and with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. [Symmetry code: (i) 2 - x, y, -z + 3/2.]
Fig. 2.
A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Crystal data

[Cd(C8H7O2)2(H2O)2]F000 = 840
Mr = 418.70Dx = 1.698 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3600 reflections
a = 26.5836 (8) Åθ = 1.4–28º
b = 5.3542 (1) ŵ = 1.36 mm1
c = 12.0625 (3) ÅT = 296 (2) K
β = 107.414 (3)ºBlock, colorless
V = 1638.21 (8) Å30.28 × 0.26 × 0.24 mm
Z = 4

Data collection

Bruker APEXII diffractometer1528 independent reflections
Radiation source: fine-focus sealed tube1462 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
Detector resolution: 10 pixels mm-1θmax = 25.5º
T = 296(2) Kθmin = 1.6º
[var phi] and ω scansh = −32→32
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −6→6
Tmin = 0.702, Tmax = 0.736l = −14→14
7419 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062  w = 1/[σ2(Fo2) + (0.0402P)2 + 0.1795P] where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
1528 reflectionsΔρmax = 0.30 e Å3
106 parametersΔρmin = −0.74 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd1.00000.07846 (3)0.75000.03171 (11)
O10.93430 (7)0.3608 (3)0.71337 (13)0.0357 (3)
O20.95598 (6)0.2636 (3)0.55703 (12)0.0396 (4)
O1W1.03133 (8)−0.2139 (3)0.66052 (13)0.0501 (5)
H1W1.0312−0.22140.59430.075*
H2W1.0438−0.34280.69150.075*
C10.92908 (9)0.3898 (4)0.60582 (19)0.0311 (5)
C20.89107 (10)0.5837 (4)0.5416 (2)0.0324 (5)
C30.89229 (10)0.6742 (5)0.4358 (2)0.0454 (6)
H30.91740.61370.40310.054*
C40.85694 (11)0.8530 (6)0.3773 (2)0.0489 (6)
H40.85820.90830.30510.059*
C50.81971 (11)0.9516 (5)0.4240 (2)0.0434 (6)
C60.81879 (12)0.8613 (6)0.5309 (3)0.0565 (7)
H60.79380.92320.56380.068*
C70.85403 (10)0.6813 (6)0.5901 (2)0.0477 (6)
H70.85290.62570.66230.057*
C80.78203 (12)1.1528 (6)0.3609 (3)0.0601 (7)
H8A0.74851.13030.37450.090*
H8B0.77761.14180.27910.090*
H8C0.79601.31380.38900.090*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd0.04502 (18)0.02220 (15)0.03014 (15)0.0000.01461 (11)0.000
O10.0501 (10)0.0346 (7)0.0261 (8)0.0036 (7)0.0173 (7)0.0045 (6)
O20.0552 (10)0.0377 (8)0.0283 (7)0.0131 (7)0.0162 (7)0.0004 (6)
O1W0.0907 (14)0.0338 (9)0.0352 (8)0.0196 (9)0.0329 (9)0.0057 (7)
C10.0400 (12)0.0263 (10)0.0283 (11)−0.0038 (9)0.0122 (10)−0.0043 (8)
C20.0378 (13)0.0327 (13)0.0272 (11)0.0011 (8)0.0103 (10)−0.0027 (8)
C30.0589 (16)0.0480 (14)0.0371 (12)0.0187 (12)0.0264 (11)0.0090 (11)
C40.0630 (17)0.0490 (14)0.0395 (13)0.0171 (13)0.0226 (12)0.0120 (12)
C50.0429 (14)0.0393 (13)0.0417 (14)0.0073 (10)0.0029 (11)−0.0040 (10)
C60.0528 (16)0.0713 (17)0.0522 (16)0.0241 (14)0.0261 (14)0.0045 (14)
C70.0494 (14)0.0644 (16)0.0358 (12)0.0155 (13)0.0225 (11)0.0068 (12)
C80.0557 (17)0.0515 (15)0.0629 (18)0.0172 (15)0.0021 (14)0.0002 (15)

Geometric parameters (Å, °)

Cd—O1W2.202 (2)C3—H30.9300
Cd—O12.252 (2)C4—C51.382 (4)
Cd—O22.478 (1)C4—H40.9300
Cd—C12.719 (2)C5—C61.383 (4)
O1—C11.272 (3)C5—C81.512 (4)
O2—C11.251 (3)C6—C71.384 (4)
O1W—H1W0.7994C6—H60.9300
O1W—H2W0.8075C7—H70.9300
C1—C21.493 (3)C8—H8A0.9600
C2—C31.375 (3)C8—H8B0.9600
C2—C71.389 (3)C8—H8C0.9600
C3—C41.379 (4)
O1W—Cd—O1Wi89.36 (9)O1—C1—Cd55.3 (1)
O1W—Cd—O1i100.87 (7)C2—C1—Cd171.8 (2)
O1W—Cd—O1140.02 (6)C3—C2—C7118.3 (2)
O1i—Cd—O195.64 (9)C3—C2—C1121.8 (2)
O1W—Cd—O2i127.11 (6)C7—C2—C1119.9 (2)
O1—Cd—O2i92.08 (6)C2—C3—C4121.2 (2)
O1W—Cd—O288.02 (5)C2—C3—H3119.4
O1—Cd—O255.00 (5)C4—C3—H3119.4
O2i—Cd—O2132.83 (7)C3—C4—C5121.2 (2)
O1W—Cd—C1i117.25 (7)C3—C4—H4119.4
O1i—Cd—C1i27.66 (6)C5—C4—H4119.4
O1—Cd—C1i93.58 (6)C4—C5—C6117.4 (2)
O2i—Cd—C1i27.36 (6)C4—C5—C8120.9 (3)
O2—Cd—C1i113.43 (6)C6—C5—C8121.6 (3)
O1W—Cd—C1114.45 (6)C5—C6—C7121.7 (2)
O1—Cd—C127.66 (6)C5—C6—H6119.1
O2—Cd—C127.36 (6)C7—C6—H6119.1
C1i—Cd—C1104.39 (9)C6—C7—C2120.0 (2)
C1—O1—Cd97.09 (13)C6—C7—H7120.0
C1—O2—Cd87.13 (13)C2—C7—H7120.0
Cd—O1W—H1W129.6C5—C8—H8A109.5
Cd—O1W—H2W123.0C5—C8—H8B109.5
H1W—O1W—H2W107.3H8A—C8—H8B109.5
O2—C1—O1120.7 (2)C5—C8—H8C109.5
O2—C1—C2121.6 (2)H8A—C8—H8C109.5
O1—C1—C2117.7 (2)H8B—C8—H8C109.5
O2—C1—Cd65.5 (2)
O1W—Cd—O1—C1−27.42 (18)C1i—Cd—C1—O2113.42 (14)
O1Wi—Cd—O1—C1−129.62 (13)O1W—Cd—C1—O1161.03 (13)
O1i—Cd—O1—C186.96 (13)O1Wi—Cd—C1—O158.30 (15)
O2i—Cd—O1—C1141.99 (13)O1i—Cd—C1—O1−95.31 (15)
O2—Cd—O1—C1−1.63 (12)O2i—Cd—C1—O1−42.12 (15)
C1i—Cd—O1—C1114.64 (14)O2—Cd—C1—O1177.1 (2)
O1W—Cd—O2—C1165.40 (14)C1i—Cd—C1—O1−69.48 (13)
O1Wi—Cd—O2—C177.70 (14)O2—C1—C2—C3−15.4 (4)
O1i—Cd—O2—C1−93.79 (13)O1—C1—C2—C3162.9 (2)
O1—Cd—O2—C11.64 (12)O2—C1—C2—C7166.1 (2)
O2i—Cd—O2—C1−52.29 (12)O1—C1—C2—C7−15.6 (3)
C1i—Cd—O2—C1−75.63 (17)C7—C2—C3—C4−1.6 (4)
Cd—O2—C1—O1−2.8 (2)C1—C2—C3—C4179.9 (2)
Cd—O2—C1—C2175.45 (19)C2—C3—C4—C51.4 (5)
Cd—O1—C1—O23.1 (2)C3—C4—C5—C6−0.9 (5)
Cd—O1—C1—C2−175.22 (17)C3—C4—C5—C8178.3 (3)
O1W—Cd—C1—O2−16.06 (15)C4—C5—C6—C70.8 (5)
O1Wi—Cd—C1—O2−118.79 (13)C8—C5—C6—C7−178.5 (3)
O1i—Cd—C1—O287.59 (13)C5—C6—C7—C2−1.0 (5)
O1—Cd—C1—O2−177.1 (2)C3—C2—C7—C61.4 (4)
O2i—Cd—C1—O2140.78 (11)C1—C2—C7—C6179.9 (3)

Symmetry codes: (i) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1ii0.811.942.739 (2)169
O1W—H1W···O2iii0.801.972.757 (2)170

Symmetry codes: (ii) −x+2, y−1, −z+3/2; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2040).

References

  • Bruker (2004). APEX2, SAINT and XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography